*IF DEF,S40_1A TRNA2S1A.2 C ******************************COPYRIGHT****************************** GTS2F400.10621 C (c) CROWN COPYRIGHT 1995, METEOROLOGICAL OFFICE, All Rights Reserved. GTS2F400.10622 C GTS2F400.10623 C Use, duplication or disclosure of this code is subject to the GTS2F400.10624 C restrictions as set forth in the contract. GTS2F400.10625 C GTS2F400.10626 C Meteorological Office GTS2F400.10627 C London Road GTS2F400.10628 C BRACKNELL GTS2F400.10629 C Berkshire UK GTS2F400.10630 C RG12 2SZ GTS2F400.10631 C GTS2F400.10632 C If no contract has been raised with this copy of the code, the use, GTS2F400.10633 C duplication or disclosure of it is strictly prohibited. Permission GTS2F400.10634 C to do so must first be obtained in writing from the Head of Numerical GTS2F400.10635 C Modelling at the above address. GTS2F400.10636 C ******************************COPYRIGHT****************************** GTS2F400.10637 C GTS2F400.10638 C*LL TRNA2S1A.3 CLL SUBROUTINE TRANSA2S TRNA2S1A.4 CLL ------------------- TRNA2S1A.5 CLL TRNA2S1A.6 CLL THIS ROUTINE TRANSFERS DATA NEEDED FOR TRNA2S1A.7 CLL COUPLING FROM THE ATMOSPHERE TO THE SLAB OCEAN. TRNA2S1A.8 CLL IT CAN BE COMPILED BY CFT77, BUT DOES NOT CONFORM TO THE TRNA2S1A.9 CLL ANSI FORTRAN77 STANDARDS BECAUSE OF ENDDOs AND !COMMENTS SJT1F304.640 CLL CALLED BY: SLABCNTL TRNA2S1A.11 CLL VERSION NUMBER 1.1 TRNA2S1A.12 CLL WRITTEN BY D L ROBERTS (14/1/91) TRNA2S1A.13 CLL MODIFIED BY A.B.KEEN (02/02/93) TRNA2S1A.14 CLL MODIFIED BY C.A.SENIOR (22/03/93) SJT1F304.641 CLL MODIFIED BY C.A.SENIOR (08/07/93) SJT1F304.642 CLL MODIFIED BY C.A.SENIOR (25/02/94) SJT1F304.643 CLL REVIEWED BY W.INGRAM (01/03/93) TRNA2S1A.15 CLL FOLLOWS DOCUMENTATION PAPER 3, VERSION 5 FOR STANDARDS. TRNA2S1A.16 CLL DOCUMENTATION: UM DOCUMENTATION PAPER 58; THE SLAB OCEAN MODEL TRNA2S1A.17 CLLEND TRNA2S1A.18 C*L TRNA2S1A.19 C----------------------------------------------------------------- TRNA2S1A.20 C TRNA2S1A.21SUBROUTINE TRANSA2S(L1,L2, 1SJT1F304.644 + L_THERM, SJT1F304.645 + LAND, SJT1F304.646 + TSTARATM, SJT1F304.647 + SLABTEMP, SJT1F304.648 + HICEATM, SJT1F304.649 + HICESLB, SJT1F304.650 + HICEMIN, SJT1F304.651 + HSNOWATM, SJT1F304.652 + HSNOWSLB, SJT1F304.653 + AICEATM, SJT1F304.654 + AICESLB, SJT1F304.655 + AICEMIN, SJT1F304.656 + TCLIM, SJT1F304.657 + TCLIMC, SJT1F304.658 + HCLIM) SJT1F304.659 C TRNA2S1A.24 C TRNA2S1A.25 C THE FLOW OF CONTROL IS STRAIGHTFORWARD. TRNA2S1A.26 C TRNA2S1A.27 INTEGER SJT1F304.660 + L1 ! IN SIZE OF DATA VECTORS SJT1F304.661 +,L2 ! IN AMOUNT OF DATA TO BE PROCESSED SJT1F304.662 C TRNA2S1A.29 LOGICAL LAND(L1) ! IN ATMOSPHERE MODEL LAND-SEA SJT1F304.663 + ! MASK (FALSE AT OCEAN POINTS) TRNA2S1A.35 +,L_THERM ! IN TRUE FOR COUPLED MODEL TYPE SJT1F304.664 + ! ICE THERMODYNAMICS SJT1F304.665 C TRNA2S1A.36 REAL TRNA2S1A.37 + TSTARATM(L1) ! IN SURFACE TEMPERATURE OF ATMOSPHERE (K) SJT1F304.666 +,SLABTEMP(L1) ! INOUT SLAB OCEAN TEMP (C) SJT1F304.667 +,HICEATM(L1) ! IN EQUIVALENT ICE DEPTH FROM ATMOSPHERE SJT1F304.668 + ! THIS IS THE DEPTH OF ICE THAT HAS THE TRNA2S1A.40 + ! SAME THERMAL CONDUCTIVITY AS THE SEA-ICE TRNA2S1A.41 + ! TOGETHER WITH THE SNOW TRNA2S1A.42 +,HICESLB(L1) ! OUT ICE DEPTH FOR USE IN SLAB (M) SJT1F304.669 +,HSNOWATM(L1) ! IN SNOW DEPTH FROM ATMOSPHERE (KG/M**2) SJT1F304.670 +,HSNOWSLB(L1) ! OUT SNOW DEPTH FOR USE IN SLAB (M) SJT1F304.671 +,AICEATM(L1) ! IN ICE CONCENTRATION FROM ATMOSPHERE SJT1F304.672 +,AICESLB(L1) ! OUT ICE CONCENTRATION FOR USE IN SLAB SJT1F304.673 +,TCLIM(L1) ! IN CLIMATOLOGICAL SST K SJT1F304.674 +,TCLIMC(L1) ! OUT CLIMATOLOGICAL SST C SJT1F304.675 +,HCLIM(L1) ! IN CLIMATOLOGICAL SEA-ICE DEPTH M SJT1F304.676 C TRNA2S1A.49 REAL TRNA2S1A.50 + AICEMIN ! IN MINIMUM CONCENTRATION OF ICE IF ICE PRESENT SJT1F304.677 +,HICEMIN ! IN MINIMUM DEPTH OF ICE IF ICE PRESENT SJT1F304.678 + ! PREVENTS SMALL ICE DEPTHS CAUSING FAILURE SJT1F304.679 C TRNA2S1A.52 C Include COMDECKS TRNA2S1A.53 C TRNA2S1A.54 *CALL C_SLAB
TRNA2S1A.55 *CALL C_0_DG_C
TRNA2S1A.56 *CALL C_MDI
TRNA2S1A.57 C TRNA2S1A.58 C LOCAL VARIABLES TRNA2S1A.59 C TRNA2S1A.60 INTEGER TRNA2S1A.61 + J ! LOOP COUNTER SJT1F304.680 C TRNA2S1A.63 REAL TFREEZE ! FREEZING POINT OF SEA WATER IN C TRNA2S1A.64 +,ONEEM8 ! SMALL +VE VALUE TO ELIMINATE ROUNDING SJT1F304.681 C TRNA2S1A.65 PARAMETER(TFREEZE = TFS - ZERODEGC) SJT1F304.682 PARAMETER(ONEEM8 = 1.0E-8 ) SJT1F304.683 C TRNA2S1A.67 C TRNA2S1A.68 C ----------------------------------------------------------- TRNA2S1A.69 C TRNA2S1A.70 DO J = 1,L2 SJT1F304.684 C TRNA2S1A.73 IF (.NOT. LAND(J)) THEN SJT1F304.685 C SJT1F304.686 C 1. CONVERT SLAB OCEAN TEMPERATURE AND CLIMATOLOGICAL SST SJT1F304.687 C FROM KELVIN TO CELSIUS AND SET SJT1F304.688 C VALUES OF SLABICE FOR ICE POINTS AND LAND POINTS. SJT1F304.689 C SJT1F304.690 C 2. CONVERT FROM EQUIVALENT ICE DEPTH SJT1F304.691 C TO MEAN ACTUAL ICE DEPTH SJT1F304.692 C NOTE THAT THE EXTRA PIECE OF ICE, HICEMIN, ADDED SJT1F304.693 C IN AT THE END OF THE LAST SLAB TIMESTEP TO PREVENT SJT1F304.694 C VERY SMALL ICE DEPTHS CAUSING THE ATMOSPHERE MODEL SJT1F304.695 C TO FAIL IS NOW REMOVED SJT1F304.696 C SJT1F304.697 IF (L_THERM) THEN SJT1F304.698 TCLIMC(J) = TCLIM(J) - ZERODEGC SJT1F304.699 ELSE TRNA2S1A.78 IF ( HCLIM(J) .LT. ONEEM8 ) THEN SJT1F304.700 TCLIMC(J) = TCLIM(J) - ZERODEGC SJT1F304.701 ELSE SJT1F304.702 TCLIMC(J) = TFREEZE SJT1F304.703 ENDIF SJT1F304.704 ENDIF TRNA2S1A.80 C SJT1F304.705 IF (l_therm) THEN SJT1F304.706 IF ( AICEATM(J) .LT. AICEMIN ) THEN SJT1F304.707 HICESLB(J) = 0.0 SJT1F304.708 ELSE SJT1F304.709 HICESLB(J) = AICEATM(J) * ( HICEATM(J) - SJT1F304.710 + CONRATIO * ( HSNOWATM(J) / RHOSNOW ) ) SJT1F304.711 + - HICEMIN SJT1F304.712 ENDIF SJT1F304.713 ELSE SJT1F304.714 IF ( AICEATM(J) .LT. AICEMIN ) THEN SJT1F304.715 SLABTEMP(J) = TSTARATM(J) - ZERODEGC SJT1F304.716 HICESLB(J) = 0.0 SJT1F304.717 ELSE SJT1F304.718 SLABTEMP(J) = TFREEZE SJT1F304.719 HICESLB(J) = AICEATM(J) * ( HICEATM(J) - SJT1F304.720 + CONRATIO * ( HSNOWATM(J) / RHOSNOW ) ) SJT1F304.721 + - HICEMIN SJT1F304.722 ENDIF SJT1F304.723 ENDIF SJT1F304.724 C SJT1F304.725 C 3. CONVERT SNOWDEPTH FROM KG/M**2 TO M SJT1F304.726 C SJT1F304.727 HSNOWSLB(J) = HSNOWATM(J) / RHOSNOW SJT1F304.728 C SJT1F304.729 C 4. INITIALISE THE ICE CONCENTRATIONS TO BE USED IN THE SJT1F304.730 C SLAB MODEL. NB THE 'OLD VALES' INPUT FROM THE ATMOSPHERE SJT1F304.731 C MUST BE SAVED AS THEY ARE USED BY THE ROUTINE SJT1F304.732 C TRANSS2A, HENCE THE TWO ARRAYS! SJT1F304.733 C SJT1F304.734 AICESLB(J) = AICEATM(J) SJT1F304.735 C SJT1F304.736 ELSE SJT1F304.737 C SJT1F304.738 SLABTEMP(J) = RMDI SJT1F304.739 TCLIMC(J) = RMDI SJT1F304.740 C SJT1F304.741 HSNOWSLB(J) = RMDI SJT1F304.742 C SJT1F304.743 HICESLB(J) = RMDI SJT1F304.744 C SJT1F304.745 AICESLB(J) = RMDI SJT1F304.746 C SJT1F304.747 ENDIF SJT1F304.748 END DO TRNA2S1A.84 C TRNA2S1A.131 RETURN TRNA2S1A.132 END TRNA2S1A.133 *ENDIF TRNA2S1A.134