*IF DEF,A05_3B,OR,DEF,A05_3C AJX1F405.179 C (c) CROWN COPYRIGHT 1995, METEOROLOGICAL OFFICE, All Rights Reserved. GTS2F400.14589 C GTS2F400.14590 C Use, duplication or disclosure of this code is subject to the GTS2F400.14591 C restrictions as set forth in the contract. GTS2F400.14592 C GTS2F400.14593 C Meteorological Office GTS2F400.14594 C London Road GTS2F400.14595 C BRACKNELL GTS2F400.14596 C Berkshire UK GTS2F400.14597 C RG12 2SZ GTS2F400.14598 C GTS2F400.14599 C If no contract has been raised with this copy of the code, the use, GTS2F400.14600 C duplication or disclosure of it is strictly prohibited. Permission GTS2F400.14601 C to do so must first be obtained in writing from the Head of Numerical GTS2F400.14602 C Modelling at the above address. GTS2F400.14603 C ******************************COPYRIGHT****************************** GTS2F400.14604 C GTS2F400.14605 CLL SUBROUTINE ENVIRON------------------------------------------------ ENVIRO3A.3 CLL ENVIRO3A.4 CLL PURPOSE : CALCULATE THE EFFECT OF CONVECTION UPON THE ENVIRO3A.5 CLL LARGE-SCALE ATMOSPHERE ENVIRO3A.6 CLL ENVIRO3A.7 CLL SUITABLE FOR SINGLE COLUMN MODEL USE ENVIRO3A.8 CLL ENVIRO3A.9 CLL ENVIRO3A.10 CLL MODEL MODIFICATION HISTORY FROM MODEL VERSION 3.0: ENVIRO3A.11 CLL VERSION DATE ENVIRO3A.12 CCL 4.0 5/05/95 : New deck added for version 3A of convection ENVIRO3A.13 CLL scheme, based on ENVIRO2B. ENVIRO3A.14 CLL Includes updating of tracers and momentum. ENVIRO3A.15 CLL Pete Inness. ENVIRO3A.16 CLL ENVIRO3A.17 CLL 4.3 03/02/97 Allow facility to switch off, under contol of a ARN2F403.56 CLL logical, code which cools and dries the layer ARN2F403.57 CLL where convection initiates to compensate for the ARN2F403.58 CLL initial parcel excess temperature and moisture; ARN2F403.59 CLL also, separately, the code which sets the ARN2F403.60 CLL parcel excess in model layer 1 to the s.d. of ARN2F403.61 CLL the turbulent fluctuations. ARN2F403.62 CLL R.N.B.Smith ARN2F403.63 CLL ARN2F403.64 CLL PROGRAMMING STANDARDS : UNIFIED MODEL DOCUMENTATION PAPER NO. 4 ENVIRO3A.18 CLL VERSION NO. 1 ENVIRO3A.19 CLL ENVIRO3A.20 CLL LOGICAL COMPONENTS COVERED: P27 ENVIRO3A.21 CLL ENVIRO3A.22 CLL SYSTEM TASK : ENVIRO3A.23 CLL ENVIRO3A.24 CLL DOCUMENTATION : UNIFIED MODEL DOCUMENTATION PAPER P27 ENVIRO3A.25 CLL ENVIRO3A.26 CLLEND----------------------------------------------------------------- ENVIRO3A.27 C ENVIRO3A.28 C*L ARGUMENTS--------------------------------------------------------- ENVIRO3A.29 C ENVIRO3A.30SUBROUTINE ENVIRON (K,NPNTS,NP_FULL,DTHEK,DQEK,DTHEKP1,DQEKP1, 3ENVIRO3A.31 * THEK,QEK,DELTAK,FLXK,THPK,QPK, ENVIRO3A.32 * THRK,QRK,THEKP1,QEKP1,BTERM,THPKP1, ENVIRO3A.33 * QPKP1,XPK,XPKP1,BWKP1,FLXKP1,BLOWST, ENVIRO3A.34 * EKP14,EXK,EXKP1,DELPK,DELPKP1,AMDETK,T1_SD, ENVIRO3A.35 * Q1_SD,L_MOM,DUEK,DVEK,DUEKP1,DVEKP1,UEK,VEK, ENVIRO3A.36 * UPK,VPK,UEKP1,VEKP1,UPKP1,VPKP1,EFLUX_U_UD, ENVIRO3A.37 * EFLUX_V_UD,L_SHALLOW, ENVIRO3A.38 * L_MID,L_TRACER,NTRA,DTRAEK,DTRAEKP1, ENVIRO3A.39 * TRAEK,TRAPK,TRAEKP1,TRAPKP1,L_XSCOMP,L_SDXS) ARN2F403.65 C ENVIRO3A.41 IMPLICIT NONE ENVIRO3A.42 C ENVIRO3A.43 C----------------------------------------------------------------------- ENVIRO3A.44 C MODEL CONSTANTS ENVIRO3A.45 C----------------------------------------------------------------------- ENVIRO3A.46 C ENVIRO3A.47 *CALL C_R_CP
ENVIRO3A.48 *CALL C_LHEAT
ENVIRO3A.49 *CALL PARXS
ENVIRO3A.50 C ENVIRO3A.51 C----------------------------------------------------------------------- ENVIRO3A.52 C VECTOR LENGTHS AND LOOP COUNTERS ENVIRO3A.53 C----------------------------------------------------------------------- ENVIRO3A.54 C ENVIRO3A.55 INTEGER NPNTS ! IN VECTOR LENGTH ENVIRO3A.56 C ENVIRO3A.57 INTEGER NP_FULL ! IN FULL VECTOR LENGTH ENVIRO3A.58 C ENVIRO3A.59 INTEGER NTRA ! IN NUMBER OF TRACERS ENVIRO3A.60 C ENVIRO3A.61 INTEGER I,KTRA ! LOOP COUNTERS ENVIRO3A.62 C ENVIRO3A.63 INTEGER K ! IN NUMBER OF MODEL LEVELS ENVIRO3A.64 C ENVIRO3A.65 C----------------------------------------------------------------------- ENVIRO3A.66 C VARIABLES THAT ARE INPUT ENVIRO3A.67 C----------------------------------------------------------------------- ENVIRO3A.68 C ENVIRO3A.69 REAL THEK(NPNTS) ! IN POTENTIAL TEMPERATURE OF CLOUD ENVIRO3A.70 ! ENVIRONMENT IN LAYER K (K) ENVIRO3A.71 C ENVIRO3A.72 REAL THEKP1(NPNTS) ! IN POTENTIAL TEMPERATURE OF CLOUD ENVIRO3A.73 ! ENVIRONMENT IN LAYER K+1 (K) ENVIRO3A.74 C ENVIRO3A.75 REAL QEK(NPNTS) ! IN MIXING RATIO OF CLOUD ENVIRO3A.76 ! ENVIRONMENT IN LAYER K (KG/KG) ENVIRO3A.77 C ENVIRO3A.78 REAL QEKP1(NPNTS) ! IN MIXING RATIO OF CLOUD ENVIRO3A.79 ! ENVIRONMENT IN LAYER K+1 (KG/KG) ENVIRO3A.80 C ENVIRO3A.81 REAL UEK(NPNTS) ! IN ENVIRONMENT U IN LAYER K (M/S) ENVIRO3A.82 C ENVIRO3A.83 REAL UEKP1(NPNTS) ! IN ENVIRONMENT U IN LAYER K+1 (M/S) ENVIRO3A.84 C ENVIRO3A.85 REAL VEK(NPNTS) ! IN ENVIRONMENT V IN LAYER K (M/S) ENVIRO3A.86 C ENVIRO3A.87 REAL VEKP1(NPNTS) ! IN ENVIRONMENT V IN LAYER K+1 (M/S) ENVIRO3A.88 C ENVIRO3A.89 REAL TRAEK(NP_FULL, ! IN TRACER OF CLOUD ENVIRONMENT ENVIRO3A.90 * NTRA) ! IN LAYER K (KG/KG) ENVIRO3A.91 C ENVIRO3A.92 REAL TRAEKP1(NP_FULL, ! IN TRACER OF CLOUD ENVIRONMENT ENVIRO3A.93 * NTRA) ! IN LAYER K+1 (KG/KG) ENVIRO3A.94 C ENVIRO3A.95 REAL THPK(NPNTS) ! IN PARCEL POTENTIAL TEMPERATURE IN ENVIRO3A.96 ! LAYER K (K) ENVIRO3A.97 C ENVIRO3A.98 REAL QPK(NPNTS) ! IN PARCEL MIXING RATIO IN LAYER K (KG/KG) ENVIRO3A.99 C ENVIRO3A.100 REAL UPK(NPNTS) ! IN PARCEL U IN LAYER K (M/S) ENVIRO3A.101 C ENVIRO3A.102 REAL VPK(NPNTS) ! IN PARCEL V IN LAYER K (M/S) ENVIRO3A.103 C ENVIRO3A.104 REAL TRAPK(NP_FULL, ! IN PARCEL TRACER IN LAYER K (KG/KG) ENVIRO3A.105 * NTRA) ENVIRO3A.106 C ENVIRO3A.107 REAL THPKP1(NPNTS) ! IN PARCEL POTENTIAL TEMPERATURE IN ENVIRO3A.108 ! LAYER K+1 (K) ENVIRO3A.109 C ENVIRO3A.110 REAL QPKP1(NPNTS) ! IN PARCEL MIXING RATIO IN LAYER K+1 ENVIRO3A.111 ! (KG/KG) ENVIRO3A.112 C ENVIRO3A.113 REAL UPKP1(NPNTS) ! IN PARCEL U IN LAYER K+1 (M/S) ENVIRO3A.114 C ENVIRO3A.115 REAL VPKP1(NPNTS) ! IN PARCEL V IN LAYER K+1 (M/S) ENVIRO3A.116 C ENVIRO3A.117 REAL TRAPKP1(NP_FULL, ! IN PARCEL TRACER IN LAYER K+1 ENVIRO3A.118 * NTRA) ! (KG/KG) ENVIRO3A.119 C ENVIRO3A.120 REAL XPK(NPNTS) ! IN PARCEL CLOUD WATER IN LAYER K (KG/KG) ENVIRO3A.121 C ENVIRO3A.122 REAL FLXK(NPNTS) ! IN PARCEL MASSFLUX IN LAYER K (PA/S) ENVIRO3A.123 C ENVIRO3A.124 LOGICAL BWKP1(NPNTS) ! IN MASK FOR WHETHER CONDENSATE IS ENVIRO3A.125 ! LIQUID IN LAYER K+1 ENVIRO3A.126 C ENVIRO3A.127 LOGICAL BTERM(NPNTS) ! IN MASK FOR PARCELS WHICH TERMINATE IN ENVIRO3A.128 ! LAYER K+1 ENVIRO3A.129 C ENVIRO3A.130 LOGICAL BLOWST(NPNTS) ! IN MASK FOR THOSE POINTS AT WHICH ENVIRO3A.131 ! STABILITY IS LOW ENOUGH FOR ENVIRO3A.132 ! CONVECTION TO OCCUR ENVIRO3A.133 C ENVIRO3A.134 LOGICAL L_SHALLOW(NPNTS), !IN SWITCHES FOR TYPE OF CONVECTION ENVIRO3A.135 * L_MID(NPNTS) ! LIKELY TO DEVELOP ENVIRO3A.136 C ENVIRO3A.137 LOGICAL L_TRACER ! IN SWITCH FOR INCLUSION OF TRACERS ENVIRO3A.138 C ENVIRO3A.139 LOGICAL L_MOM ! IN SWITCH FOR INCLUSION OF ENVIRO3A.140 ! MOMENTUM TRANSPORTS ENVIRO3A.141 C ENVIRO3A.142 LOGICAL L_XSCOMP ! IN Switch for allowing compensating ARN2F403.66 ! cooling and drying of the environment ARN2F403.67 ! in initiating layer ARN2F403.68 C ARN2F403.69 LOGICAL L_SDXS ! IN Switch for allowing parcel excess to ARN2F403.70 ! be set to s.d. of turbulent ARN2F403.71 ! fluctuations in lowest model layer ARN2F403.72 C ARN2F403.73 REAL THRK(NPNTS) ! IN PARCEL DETRAINMENT POTENTIAL ENVIRO3A.143 ! TEMPERATURE IN LAYER K (K) ENVIRO3A.144 C ENVIRO3A.145 REAL QRK(NPNTS) ! IN PARCEL DETRAINMENT MIXING RATIO ENVIRO3A.146 ! IN LAYER K (KG/KG) ENVIRO3A.147 C ENVIRO3A.148 REAL XPKP1(NPNTS) ! IN PARCEL CLOUD WATER IN LAYER K+1 ENVIRO3A.149 ! (KG/KG) ENVIRO3A.150 C ENVIRO3A.151 REAL FLXKP1(NPNTS) ! IN PARCEL MASSFLUX IN LAYER K+1 (PA/S) ENVIRO3A.152 C ENVIRO3A.153 REAL DELTAK(NPNTS) ! IN PARCEL FORCED DETRAINMENT RATE ENVIRO3A.154 ! IN LAYER K MULTIPLIED BY APPROPRIATE ENVIRO3A.155 ! LAYER THICKNESS ENVIRO3A.156 C ENVIRO3A.157 REAL EKP14(NPNTS) ! IN ENTRAINMENT RATE FOR LEVEL K+1/4 ENVIRO3A.158 ! MULTIPLIED BY APPROPRIATE LAYER ENVIRO3A.159 ! THICKNESS ENVIRO3A.160 C ENVIRO3A.161 REAL EXK(NPNTS) ! IN EXNER RATIO FOR MID-POINT OF LAYER K ENVIRO3A.162 C ENVIRO3A.163 REAL EXKP1(NPNTS) ! IN EXNER RATIO FOR MID-POINT OF ENVIRO3A.164 ! LAYER K+1 ENVIRO3A.165 C ENVIRO3A.166 REAL DELPK(NPNTS) ! IN PRESSURE DIFFERENCE ACROSS LAYER K ENVIRO3A.167 ! (PA) ENVIRO3A.168 C ENVIRO3A.169 REAL DELPKP1(NPNTS) ! IN PRESSURE DIFFERENCE ACROSS LAYER K+1 ENVIRO3A.170 ! (PA) ENVIRO3A.171 C ENVIRO3A.172 REAL AMDETK(NPNTS) ! IN MIXING DETRIANMENT AT LEVEL K ENVIRO3A.173 ! MULTIPLIED BY APPROPRIATE LAYER ENVIRO3A.174 ! THICKNESS ENVIRO3A.175 C ENVIRO3A.176 REAL T1_SD(NPNTS) ! IN Standard deviation of turbulent ENVIRO3A.177 C ! fluctuations of layer 1 ENVIRO3A.178 C ! temperature (K). ENVIRO3A.179 REAL Q1_SD(NPNTS) ! IN Standard deviation of turbulent ENVIRO3A.180 C ! fluctuations of layer 1 ENVIRO3A.181 C ! humidity (kg/kg). ENVIRO3A.182 C ENVIRO3A.183 C----------------------------------------------------------------------- ENVIRO3A.184 C VARIABLES THAT ARE INPUT AND OUTPUT ENVIRO3A.185 C----------------------------------------------------------------------- ENVIRO3A.186 C ENVIRO3A.187 REAL DTHEK(NPNTS) ! INOUT ENVIRO3A.188 ! IN INCREMENT TO MODEL POTENTIAL ENVIRO3A.189 ! TEMPERATURE IN LAYER K DUE TO ENVIRO3A.190 ! CONVECTION (MAY BE NONE ZERO ENVIRO3A.191 ! DUE TO A PREVIOUS SPLIT FINAL ENVIRO3A.192 ! DETRAINMENT CALCULATION) (K/S) ENVIRO3A.193 ! OUT UPDATED INCREMENT TO MODEL POTENTIAL ENVIRO3A.194 ! TEMPERATURE IN LAYER K DUE TO ENVIRO3A.195 ! CONVECTION (K/S) ENVIRO3A.196 C ENVIRO3A.197 REAL DQEK(NPNTS) ! INOUT ENVIRO3A.198 ! IN INCREMENT TO MODEL MIXING RATIO ENVIRO3A.199 ! IN LAYER K DUE TO CONVECTION ENVIRO3A.200 ! (MAY BE NONE ZERO ENVIRO3A.201 ! DUE TO A PREVIOUS SPLIT FINAL ENVIRO3A.202 ! DETRAINMENT CALCULATION) (KG/KG/S) ENVIRO3A.203 ! OUT UPDATED INCREMENT TO MODEL MIXING ENVIRO3A.204 ! RATIO IN LAYER K DUE TO ENVIRO3A.205 ! CONVECTION (KG/KG/S) ENVIRO3A.206 C ENVIRO3A.207 REAL DUEK(NPNTS) ! INOUT ENVIRO3A.208 ! IN INCREMENT TO MODEL U DUE TO ENVIRO3A.209 ! CONVECTION (M/S) ENVIRO3A.210 ! OUT UPDATED INCREMENT TO MODEL U ENVIRO3A.211 ! DUE TO CONVECTION ENVIRO3A.212 C ENVIRO3A.213 REAL DVEK(NPNTS) ! INOUT ENVIRO3A.214 ! IN INCREMENT TO MODEL V DUE TO ENVIRO3A.215 ! CONVECTION (M/S) ENVIRO3A.216 ! OUT UPDATED INCREMENT TO MODEL V ENVIRO3A.217 ! DUE TO CONVECTION ENVIRO3A.218 C ENVIRO3A.219 REAL DTRAEK(NP_FULL, ! INOUT ENVIRO3A.220 * NTRA) ! IN INCREMENT TO MODEL TRACER IN ENVIRO3A.221 ! LAYER K DUE TO CONVECTION ENVIRO3A.222 ! (MAY BE NON ZERO DUE TO ENVIRO3A.223 ! A PREVIOUS SPLIT FINAL DETRAINMENT ENVIRO3A.224 ! CALCULATION (KG/KG/S) ENVIRO3A.225 ! OUT UPDATED INCREMENT TO MODEL TRACER ENVIRO3A.226 ! IN LAYER K DUE TO CONVECTION ENVIRO3A.227 ! (KG/KG/S) ENVIRO3A.228 C ENVIRO3A.229 C----------------------------------------------------------------------- ENVIRO3A.230 C VARIABLES THAT ARE OUTPUT ENVIRO3A.231 C----------------------------------------------------------------------- ENVIRO3A.232 C ENVIRO3A.233 REAL DTHEKP1(NPNTS) ! OUT INCREMENT TO MODEL POTENTIAL ENVIRO3A.234 ! TEMPERATURE IN LAYER K+1 DUE TO ENVIRO3A.235 ! CONVECTION (K/S) ENVIRO3A.236 C ENVIRO3A.237 REAL DQEKP1(NPNTS) ! OUT INCREMENT TO MODEL MIXING RATIO ENVIRO3A.238 ! IN LAYER K+1 DUE TO CONVECTION ENVIRO3A.239 ! (KG/KG/S) ENVIRO3A.240 C ENVIRO3A.241 REAL DUEKP1(NPNTS) ! OUT INCREMENT TO MODEL U IN LAYER K+1 ENVIRO3A.242 ! DUE TO CONVECTION ENVIRO3A.243 C ENVIRO3A.244 REAL DVEKP1(NPNTS) ! OUT INCREMENT TO MODEL V IN LAYER K+1 ENVIRO3A.245 ! DUE TO CONVECTION ENVIRO3A.246 C ENVIRO3A.247 REAL DTRAEKP1(NP_FULL, ! OUT INCREMENT TO MODEL TRACER ENVIRO3A.248 * NTRA) ! IN LAYER K+1 DUE TO CONVECTION ENVIRO3A.249 ! (KG/KG) ENVIRO3A.250 C ENVIRO3A.251 REAL EFLUX_U_UD(NPNTS), ! INOUT ENVIRO3A.252 * EFLUX_V_UD(NPNTS) ! IN EDDY FLUX OF MOMENTUM AT BOTTOM ENVIRO3A.253 ! OF A LAYER DUE TO UD ENVIRO3A.254 ! OUT EDDY FLUX OF MOMENTUM AT TOP ENVIRO3A.255 ! OF A LAYER DUE TO UD ENVIRO3A.256 C ENVIRO3A.257 C ENVIRO3A.258 C----------------------------------------------------------------------- ENVIRO3A.259 C VARIABLES THAT ARE DEFINED LOCALLY ENVIRO3A.260 C----------------------------------------------------------------------- ENVIRO3A.261 C ENVIRO3A.262 REAL EL ! LATENT HEAT OF CONDENSATION OR ENVIRO3A.263 ! (CONDENSATION + FUSION) (J/KG) ENVIRO3A.264 C ENVIRO3A.265 REAL TEMPRY ! TEMPORARY ARRAY ENVIRO3A.266 C ENVIRO3A.267 REAL THPIXS,QPIXS ! PARCEL EXCESS POTENTIAL TEMP(K) ENVIRO3A.268 ! AND MOISTURE(KG/KG) ENVIRO3A.269 C ENVIRO3A.270 REAL FLX_U_KP0P5 ! FLUX OF ZONAL MOMENTUM IN CLOUD AT TOP ENVIRO3A.271 ! OF CURRENT LAYER ENVIRO3A.272 C ENVIRO3A.273 REAL FLX_V_KP0P5 ! FLUX OF MERIDIONAL MOM. IN CLOUD AT TOP ENVIRO3A.274 ! OF CURRENT LAYER ENVIRO3A.275 C ENVIRO3A.276 C*--------------------------------------------------------------------- ENVIRO3A.277 C ENVIRO3A.278 DO I=1,NPNTS ENVIRO3A.279 C ENVIRO3A.280 C----------------------------------------------------------------------- ENVIRO3A.281 C CREATE A VECTOR OF LATENT HEATS ENVIRO3A.282 C----------------------------------------------------------------------- ENVIRO3A.283 C ENVIRO3A.284 IF (BWKP1(I)) THEN ENVIRO3A.285 EL = LC ENVIRO3A.286 ELSE ENVIRO3A.287 EL = LC + LF ENVIRO3A.288 ENDIF ENVIRO3A.289 C ENVIRO3A.290 C---------------------------------------------------------------------- ENVIRO3A.291 C CALCULATE PARCEL MASSFLUX DIVIDED BY THE THICKNESS OF LAYER K ENVIRO3A.292 C THIS VALUE IS USED IN SEVERAL PLACES IN THE SUBROUTINE ENVIRO3A.293 C---------------------------------------------------------------------- ENVIRO3A.294 C ENVIRO3A.295 TEMPRY = FLXK(I)/DELPK(I) ENVIRO3A.296 C ENVIRO3A.297 IF (BLOWST(I) .AND. L_XSCOMP) THEN ARN2F403.74 CL ENVIRO3A.299 CL---------------------------------------------------------------------- ENVIRO3A.300 CL AT THE LOWEST CONVECTIVE LAYER, THE PARCEL MASS FLUX IS A FLUX FROM ENVIRO3A.301 CL THE ENVIRONMENT. IE. THE INITIAL MASS FLUX IS ENTRAINED WITH EXCESS ENVIRO3A.302 CL POTENTIAL TEMPERATURE AND MIXING RATIO TPIXS, QPIXS ENVIRO3A.303 CL ENVIRO3A.304 CL UM DOCUMENTATIO PAPER P27 ENVIRO3A.305 CL SECTION (10), EQUATION (39) ENVIRO3A.306 CL---------------------------------------------------------------------- ENVIRO3A.307 CL ENVIRO3A.308 IF(L_SHALLOW(I))THEN ENVIRO3A.309 CL ENVIRO3A.310 THPIXS=THPIXS_SHALLOW ENVIRO3A.311 QPIXS=QPIXS_SHALLOW ENVIRO3A.312 CL ENVIRO3A.313 ELSEIF(L_MID(I))THEN ENVIRO3A.314 THPIXS=THPIXS_MID ENVIRO3A.315 QPIXS=QPIXS_MID ENVIRO3A.316 CL ENVIRO3A.317 ELSE ENVIRO3A.318 CL ENVIRO3A.319 THPIXS=THPIXS_DEEP ENVIRO3A.320 QPIXS=QPIXS_DEEP ENVIRO3A.321 CL ENVIRO3A.322 ENDIF ENVIRO3A.323 CL ENVIRO3A.324 IF ( L_SDXS .AND. K .EQ. 1 ) THEN ARN2F403.75 DTHEK(I) = DTHEK(I) - TEMPRY*MAX(THPIXS , T1_SD(I)/EXK(I)) ENVIRO3A.326 DQEK(I) = DQEK(I) - TEMPRY*MAX(QPIXS , Q1_SD(I)) ENVIRO3A.327 ELSE ENVIRO3A.328 DTHEK(I) = DTHEK(I) - TEMPRY*THPIXS ENVIRO3A.329 DQEK(I) = DQEK(I) - TEMPRY*QPIXS ENVIRO3A.330 ENDIF ENVIRO3A.331 ENDIF ENVIRO3A.332 CL ENVIRO3A.333 CL--------------------------------------------------------------------- ENVIRO3A.334 CL EFFECT OF CONVECTION UPON POTENTIAL TEMPERATURE OF LAYER K ENVIRO3A.335 CL ENVIRO3A.336 CL UM DOCUMENTATION PAPER P27 ENVIRO3A.337 CL SECTION (10), EQUATION (38A) ENVIRO3A.338 CL-------------------------------------------------------------------- ENVIRO3A.339 CL ENVIRO3A.340 DTHEK(I) = DTHEK(I) + TEMPRY * ( ENVIRO3A.341 * ENVIRO3A.342 * (1+EKP14(I)) * (1.0-DELTAK(I)) * ! COMPENSATING ENVIRO3A.343 * (1-AMDETK(I)) * (THEKP1(I)-THEK(I)) ! SUBSIDENCE ENVIRO3A.344 * + ENVIRO3A.345 * DELTAK(I) * (1.0-AMDETK(I)) * ! FORCED ENVIRO3A.346 * (THRK(I)-THEK(I)- ! DETRAINMENT ENVIRO3A.347 * ((EL/CP)*XPK(I)/EXK(I))) ENVIRO3A.348 * + ENVIRO3A.349 * AMDETK(I) * (THPK(I)-THEK(I)- ! MIXING ENVIRO3A.350 * ((EL/CP)*XPK(I)/EXK(I))) ! DETRAINMENT ENVIRO3A.351 * ) ENVIRO3A.352 CL ENVIRO3A.353 CL--------------------------------------------------------------------- ENVIRO3A.354 CL EFFECT OF CONVECTION UPON MIXING RATIO OF LAYER K ENVIRO3A.355 CL ENVIRO3A.356 CL UM DOCUMENTATION PAPER P27 ENVIRO3A.357 CL SECTION (10), EQUATION (38B) ENVIRO3A.358 CL-------------------------------------------------------------------- ENVIRO3A.359 CL ENVIRO3A.360 DQEK(I) = DQEK(I) + TEMPRY * ( ENVIRO3A.361 * ENVIRO3A.362 * (1+EKP14(I)) * (1.0-DELTAK(I)) * ! COMPENSATING ENVIRO3A.363 * (1-AMDETK(I)) * (QEKP1(I)-QEK(I)) ! SUBSIDENCE ENVIRO3A.364 * + ENVIRO3A.365 * DELTAK(I) * (1.0-AMDETK(I)) * ! FORCED ENVIRO3A.366 * (QRK(I)-QEK(I)+XPK(I)) ! DETRAINMENT ENVIRO3A.367 * + ENVIRO3A.368 * AMDETK(I) * (QPK(I)-QEK(I)+ ! MIXING ENVIRO3A.369 * XPK(I)) ! DETRAINMENT ENVIRO3A.370 * ) ENVIRO3A.371 CL ENVIRO3A.372 CL---------------------------------------------------------------------- ENVIRO3A.373 CL TERMINAL DETRAINMENT AND SUBSIDENCE IN TERMINAL LAYER ENVIRO3A.374 CL ENVIRO3A.375 CL UM DOCUMENTATION PAPER P27 ENVIRO3A.376 CL SECTION (10), EQUATION (40) ENVIRO3A.377 CL-------------------------------------------------------------------- ENVIRO3A.378 CL ENVIRO3A.379 IF ( BTERM(I) ) THEN ENVIRO3A.380 TEMPRY = FLXKP1(I)/DELPKP1(I) ENVIRO3A.381 DTHEKP1(I) = DTHEKP1(I) + TEMPRY*((THPKP1(I)-THEKP1(I)) ENVIRO3A.382 * - EL*XPKP1(I)/(EXKP1(I)*CP)) ENVIRO3A.383 DQEKP1(I) = DQEKP1(I) + TEMPRY*(QPKP1(I)-QEKP1(I) ENVIRO3A.384 * + XPKP1(I)) ENVIRO3A.385 C ENVIRO3A.386 END IF ENVIRO3A.387 CL ENVIRO3A.388 END DO ENVIRO3A.389 CL ENVIRO3A.390 CL--------------------------------------------------------------------- ENVIRO3A.391 CL CALCULATE EFFECT OF CONVECTION UPON MOMENTUM OF LAYER K ENVIRO3A.392 CL AND DO TERMINAL DETRAINMENT OF MOMENTUM ENVIRO3A.393 CL ENVIRO3A.394 CL RATE OF CHANGE OF WIND FIELD BY CONVECTION IS ESTIMATED USING A ENVIRO3A.395 CL DIVERGENCE OF VERTICAL EDDY MOMENTUM FLUX ACROSS THE LAYER ENVIRO3A.396 CL AN UPSTREAM ASSUMPTION IS USED IN THE FINITE DIFFERENCE ENVIRO3A.397 CL APPROXIMATIONS ENVIRO3A.398 CL-------------------------------------------------------------------- ENVIRO3A.399 CL ENVIRO3A.400 IF(L_MOM)THEN ENVIRO3A.401 C ENVIRO3A.402 DO I=1,NPNTS ENVIRO3A.403 C---------------------------------------------------------------------- ENVIRO3A.404 C ESTIMATE EDDY FLUX AT TOP OF CURRENT LAYER DUE TO CONVECTION ENVIRO3A.405 C---------------------------------------------------------------------- ENVIRO3A.406 FLX_U_KP0P5 = FLXK(I) * (1.0-AMDETK(I)) * (1.0-DELTAK(I)) * ENVIRO3A.407 * (1.0+EKP14(I)) * (UPK(I)-UEKP1(I)) ENVIRO3A.408 FLX_V_KP0P5 = FLXK(I) * (1.0-AMDETK(I)) * (1.0-DELTAK(I)) * ENVIRO3A.409 * (1.0+EKP14(I)) * (VPK(I)-VEKP1(I)) ENVIRO3A.410 C ENVIRO3A.411 IF (BLOWST(I)) THEN ENVIRO3A.412 C---------------------------------------------------------------------- ENVIRO3A.413 C INITIAL CONVECTING LAYER - NO FLUX AT BASE OF LAYER ENVIRO3A.414 C---------------------------------------------------------------------- ENVIRO3A.415 DUEK(I) = DUEK(I) - FLX_U_KP0P5 / DELPK(I) ENVIRO3A.416 DVEK(I) = DVEK(I) - FLX_V_KP0P5 / DELPK(I) ENVIRO3A.417 C---------------------------------------------------------------------- ENVIRO3A.418 C STORE EDDY FLUX AT TOP OF LAYER READY FOR CALCULATION OF NEXT LAYER ENVIRO3A.419 C---------------------------------------------------------------------- ENVIRO3A.420 EFLUX_U_UD(I) = FLX_U_KP0P5 ENVIRO3A.421 EFLUX_V_UD(I) = FLX_V_KP0P5 ENVIRO3A.422 C ENVIRO3A.423 ELSE ENVIRO3A.424 C---------------------------------------------------------------------- ENVIRO3A.425 C CONVECTING LAYER - TAKE EDDY FLUX DIVERGENCE ACROSS THE LAYER ENVIRO3A.426 C---------------------------------------------------------------------- ENVIRO3A.427 DUEK(I) = DUEK(I) - ( (FLX_U_KP0P5 - EFLUX_U_UD(I)) / ENVIRO3A.428 * DELPK(I) ) ENVIRO3A.429 DVEK(I) = DVEK(I) - ( (FLX_V_KP0P5 - EFLUX_V_UD(I)) / ENVIRO3A.430 * DELPK(I) ) ENVIRO3A.431 C---------------------------------------------------------------------- ENVIRO3A.432 C STORE EDDY FLUX AT TOP OF LAYER READY FOR CALCULATION OF NEXT LAYER ENVIRO3A.433 C---------------------------------------------------------------------- ENVIRO3A.434 EFLUX_U_UD(I) = FLX_U_KP0P5 ENVIRO3A.435 EFLUX_V_UD(I) = FLX_V_KP0P5 ENVIRO3A.436 C ENVIRO3A.437 END IF ENVIRO3A.438 C ENVIRO3A.439 IF(BTERM(I))THEN ENVIRO3A.440 C---------------------------------------------------------------------- ENVIRO3A.441 C CONVECTION TERMINATES - CALCULATE INCREMENT DUE TO CONVECTION ENVIRO3A.442 C IN TOP LAYER - NO FLUX OUT OF TOP OF LAYER ENVIRO3A.443 C---------------------------------------------------------------------- ENVIRO3A.444 DUEKP1(I) = EFLUX_U_UD(I) / DELPKP1(I) ENVIRO3A.445 DVEKP1(I) = EFLUX_V_UD(I) / DELPKP1(I) ENVIRO3A.446 C---------------------------------------------------------------------- ENVIRO3A.447 C ZERO EDDY FLUX OUT OF TOP OF LAYER ENVIRO3A.448 C---------------------------------------------------------------------- ENVIRO3A.449 EFLUX_U_UD(I) = 0.0 ENVIRO3A.450 EFLUX_V_UD(I) = 0.0 ENVIRO3A.451 C ENVIRO3A.452 END IF ENVIRO3A.453 C ENVIRO3A.454 END DO ENVIRO3A.455 C ENVIRO3A.456 END IF ENVIRO3A.457 C ENVIRO3A.458 CL_____________________________________________________________________ ENVIRO3A.459 CL ENVIRO3A.460 CL EFFECT OF CONVECTION ON TRACER CONTENT OF LAYER K ENVIRO3A.461 CL (LOOPING OVER NUMBER OF TRACER VARIABLES) ENVIRO3A.462 CL AND DO TERMINAL DETRAINMENT OF TRACER ENVIRO3A.463 CL_____________________________________________________________________ ENVIRO3A.464 CL ENVIRO3A.465 IF(L_TRACER)THEN ENVIRO3A.466 CL ENVIRO3A.467 DO KTRA = 1,NTRA ENVIRO3A.468 DO I = 1,NPNTS ENVIRO3A.469 CL ENVIRO3A.470 TEMPRY = FLXK(I)/DELPK(I) ENVIRO3A.471 DTRAEK(I,KTRA) = DTRAEK(I,KTRA) + TEMPRY * ( ENVIRO3A.472 * ENVIRO3A.473 * (1+EKP14(I)) * (1.0-DELTAK(I)) * ! COMPENSATING ENVIRO3A.474 * (1-AMDETK(I)) * (TRAEKP1(I,KTRA)-TRAEK(I,KTRA)) ! SUBSIDENCE ENVIRO3A.475 *+ ENVIRO3A.476 * DELTAK(I) * (1.0-AMDETK(I)) * ! FORCED ENVIRO3A.477 * (TRAPK(I,KTRA)-TRAEK(I,KTRA)) ! DETRAINMENT ENVIRO3A.478 *+ ENVIRO3A.479 * AMDETK(I) * (TRAPK(I,KTRA)-TRAEK(I,KTRA)) ! MIXING ENVIRO3A.480 * ) ! DETRAINMENT ENVIRO3A.481 CL ENVIRO3A.482 C ENVIRO3A.483 IF(BTERM(I))THEN ENVIRO3A.484 TEMPRY = FLXKP1(I)/DELPKP1(I) ENVIRO3A.485 DTRAEKP1(I,KTRA) = DTRAEKP1(I,KTRA) +TEMPRY* ENVIRO3A.486 * (TRAPKP1(I,KTRA)-TRAEKP1(I,KTRA)) ENVIRO3A.487 END IF ENVIRO3A.488 C ENVIRO3A.489 END DO ENVIRO3A.490 C ENVIRO3A.491 END DO ENVIRO3A.492 C ENVIRO3A.493 END IF ENVIRO3A.494 RETURN ENVIRO3A.495 END ENVIRO3A.496 *ENDIF ENVIRO3A.497