

Probing parametric uncertainty in the rainfall response to mid-Holocene conditions for North Africa

Peter Hopcroft

School of Geography, Earth & Environmental Sciences

University of Birmingham p.hopcroft@bham.ac.uk

Paul Valdes University of Bristol
William Ingram University of Oxford

Evidence for a 'Green' Sahara 9000-5000 years ago

Pollen

Evidence for a 'Green' Sahara 9000-5000 years ago

Pollen + Lake levels

Evidence for a 'Green' Sahara 9000-5000 years ago

Pollen + Lake levels + Dust flux

Modelling the rainfall increase

Representing moist convection

Sampling uncertainty in convection

HadAM3 - 3.75° x 2.5° x 19 levels (Pope et al 2000, Valdes et al 2017)

MOSES 2.1 land surface model (Essery et al 2003)

Mass-flux convection scheme (Gregory & Rowntree, 1990, Gregory et al 1997)

	Parameter	Description	default	range	
1	Е	Controls vertical profile of entrainment/detrainment	0	-0.5, 0.35	
2	F	Controls the magnitude of entrainment/detrainment	1	0.75, 1.5	
3	$lpha_{det}$	Sensitivity to relative humidity in mixing detrainment	3	0.5, 5	
4	r_{det}	The sensitivity to vertical buoyancy gradient in forced detrainment	0.8	0.1, 1	
5	xsbmin	Minimum excess buoyancy to continue parcel ascent (K)	0.2	0.1,2.0	150 member
6	$t_{\rm initial}$	Excess parcel initial temperature (K)	0.2	0.2, 2.0	ensemble
7	$q_{initial}$	Excess parcel initial moisture $(kgkg^{-1})$	0.0	0, 5e-4	
8	z0ofsea	Free convective roughness length over sea (m)	$1.3x10^{-3}$	$2x10^{-4}$, $5x10^{-3}$	
9	$ au_{CAPE}$	Time for destruction of CAPE (s)	7200	3600, 14400	
10	vf1	Ice fall speed (ms^{-1})	1	0.5, 2.0	
11	ct	Accretion constant (s^{-1})	2.0x10-4	0.5x10-4, 4.0x10-4	

Simulation setup

Present day

- $CO_2 = 280 \text{ ppm}$
- CH₄ =700 ppb
- Vegetation from IGBP observations
- SSTs/sea-ice: HadISST 1981-2010 climatology

Mid-Holocene

- 6kyr orbital parameters
- 50% grass/shrub in North Africa over Sahara
- SSTs/sea-ice: as present day + 6kyr anomalies from coupled (AOGCM) simulations

2xCO₂

- $CO_2 = 560 \text{ ppm}$
- SSTs/ice: as present day + 2xCO₂ anomalies from coupled simulations

Results: rainfall over North Africa

minus

present day

Sahara

precipitation

(mm/day)

Mid-Holocene climate anomalies

Mid-Holocene minus present day over North

Africa (15-25°N)

Sorted by ascending magnitude of precipitation anomaly

Δ precipitation (mm/day)

 Δ surface air temperature (K)

Rainfall range:

0.58 – 2.77 mm/day

Control:

1.3 mm/day

Ensemble results: anomalies

mid-Holocene minus present day Sahara precipitation (mm/day)

JJA rainfall change over the Sahara

Emulator prediction: anomalies

mid-Holocene

minus

present day

Sahara

precipitation

(mm/day)

Tuning the model parameters

Strongest constraints on the entrainment vertical profile parameter

Tuning the model parameters

Stratospheric water vapour (ppbv) at 110mbar

Rainfall anomalies

Control Optimised

JJA mean: 20-30 °N

60W

-1.5

-2

-0.5

-0.25

0.25

0.5

120W

133 mm/day 322 mm/day (+ 140 %)

Annual mean: 20-30 °N

112 mm/day 188 mm/day (+ 54 %)

60E

1.5

Conclusions and next steps

- Possible to reconcile 'Green' Sahara rainfall by tuning the convection scheme in a GCM
- Reduced gradient of entrainment vertical dependence is key
- Must take care of stratospheric water vapour and possibly the impact on climate sensitivity

Future steps

- Include other metrics in tuning (e.g. present day stratospheric water vapour)
- Understand dependence of monsoon intensity versus spatial extent and duration

