The Last Interglacial climate in the high latitudes

Part I : A spatio-temporal surface temperature data synthesis *Part II:* Toward improved Model-Data comparisons

Émilie Capron & Emma J. Stone

A. Govin, D. J. Lunt, V. Masson-Delmotte, S. Mulitza,B. Otto-Bliesner, A. J. Payne, T. L. Rasmussen, L. C. Sime, J. Singarayer, P. J. Valdes, C. Waelbroeck, E. W. Wolff.

The Last Interglacial climate in the high latitudes

Part I : A spatio-temporal surface temperature data synthesis *Part II:* Toward improved Model-Data comparisons

Émilie Capron & Emma J. Stone

<u>A. Govin</u>, D. J. Lunt, V. Masson-Delmotte, S. Mulitza, B. Otto-Bliesner, A. J. Payne, T. L. Rasmussen, L. C. Sime, J. Singarayer, P. J. Valdes, C. Waelbroeck, E. W. Wolff.

The Last Interglacial (LIG, ~129-116 ka)

Last Interglacial <u>Maximum Annual</u> surface temperature (Turney & Jones, 2010)

Limitations of existing LIG data synthesis

 \rightarrow Original chronologies are used

→Need for HARMONIZED age scales across the LIG (Govin, Capron et al. QSR 2015)

Limitations of existing LIG data synthesis

ightarrow One UNIQUE time slice to represent the entire LIG

Underlying hypothesis: Maximum LIG Warmth occurred synchronously across the world

e.g. Bauch et al. 2011; Govin et al. 2012

What is the sequence of climatic events over the LIG ?
 → Need for a temporal in addition to a spatial climatic evolution over the LIG

British

Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

LIG Model-Data Comparison

Simulations for different time intervals are tested against a *unique* LIG time slice:

→ Could partly explain model-data mismatches (Bakker & Renssen 2014)

Need for multiple time slices for more robust Model-Data comparison

Objectives of the study

- <u>New data synthesis</u>: to document the magnitude and spatio-temporal evolution of temperature changes across the LIG
 - ✓ To define a consistent time frame for multiple ice and marine records
 - ✓ To define 4 time slices of temperature anomalies
 - ✓ To estimate and propagate *temperature & age uncertainties*

<u>Model-data comparison</u>: to illustrate the potential of the new
 LIG data synthesis as improved benchmark for climate models

LIG Data Selection

British Antarctic Survey natural environment research council

- 5 ice cores
- 39 marine sediment cores (42 SST records)
- High latitudes: > 40° N & > 40° S
- Surface air temperature & SST records
- Temporal resolution of at least 2000 years
- Annual or summer signals

AICC2012 as the reference time scale (Bazin et al. 2013, Veres et al. 2013)

- Common to 5 ice cores
- LIG absolute dating error < 1.8 ka (1 σ)

AICC2012 as the reference time scale (Bazin et al. 2013, Veres et al. 2013)

- Common to 5 ice cores
- LIG absolute dating error < 1.8 ka (1 σ)

Hypothesis (Govin et al. 2012) : SST changes in the sub-antarctic zone of the Southern Ocean (resp. North Atlantic) occurred *simultaneously* with air temperature over Antarctica (resp. Greenland)

Southern Ocean **SST** tied to EPICA Dome C **δD** record

North Atlantic SST tied to:

- NGRIP ice δ¹⁸O (100-120 ka)
- EDC CH₄ (128-140 ka)

LIG high latitude climate temporal reconstructions

Need for uncertainty estimates on the surface temperature records

LIG high latitude climate temporal reconstructions

Monte Carlo Analysis with 1000 age model simulations taking into account :

(1) Errors on SST reconstruction method : from 0.6 to 2.1° C (average of 1.4° C)

(2) Age Uncertainties on tie point definition : from 0.5 to 4 ka

 \pm 2.6° C (2 σ) in average

VID02-2488	3 (Southern	Ocean)
Depth_cm	Age_ka	Error_ka
2250.9	102.6	0.7
2279.4	103.8	0.7
2330.2	106.7	0.7
2424.5	110.3	1
2503.0	117.4	1.5
2552.6	131.0	0.7
2658.5	135.9	2

LIG high latitude climate temporal reconstructions

Useful benchmarks for transient climate simulations e.g. Loutre et al. 2013; Pfeiffer et al. in revision

115 ka (114-116 ka)

120 ka (119-121 ka)

125 ka (124-126 ka)

130 ka (129-131 ka)

115 ka (114-116 ka)

120 ka (119-121 ka)

125 ka (124-126 ka)

130 ka (129-131 ka)

 \rightarrow Temperature anomalies relative to present day

- Ice cores: instrumental mean annual surface air temperature
- Marine cores: World Ocean Atlas (WOA) 1998 SST (10-m deep) (Kucera et al. 2005)

115 ka (114-116 ka)

120 ka (119-121 ka)

125 ka (124-126 ka)

130 ka (129-131 ka)

- \rightarrow Temperature anomalies relative to present day
- Ice cores: instrumental mean annual surface air temperature
- Marine cores: World Ocean Atlas (WOA) 1998 SST (10-m deep) (Kucera et al. 2005)
- → Estimation of **temperature errors**

• Early Southern Hemisphere warming (130 ka) compared to the North Atlantic region

- Early Southern Hemisphere warming (130 ka) compared to the North Atlantic region
- Warmer-than-present conditions in both hemispheres (125 ka, 120 ka)

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

- Early Southern Hemisphere warming (130 ka) compared to the North Atlantic region
- Warmer-than-present conditions in both hemispheres (125 ka, 120 ka)
- Longer period of warmer-than-present conditions in the SH (vs. the North Atlantic)

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

- Early Southern Hemisphere warming (130 ka) compared to the North Atlantic region
- Warmer-than-present conditions in both hemispheres (125 ka, 120 ka)
- Longer period of warmer-than-present conditions in the SH (vs. the North Atlantic)
- Larger amplitude of North Atlantic temperature changes into and out of the LIG

Summary

New LIG data synthesis of high-latitude surface temperatures (Capron et al. QSR 2014)

- ✓ Consistent time frame for marine and ice core records;
- ✓ Spatio-temporal evolution of LIG surface temperatures;
- 115, 120, 125 & 130 ka time slices of surface temperature anomalies with 2σ errors (including temperature & age uncertainties).

Inputs for ice sheet models to investigate the contribution of Greenland and Antarctic to sea level changes during the LIG.

→ Toward improved LIG climate model-data comparisons (Capron et al. QSR 2014; Stone et al. in revision)

The Last Interglacial climate in the high latitudes

Part I : A spatio-temporal surface temperature data synthesis *Part II:* Toward improved Model-Data comparisons

Modelling the LIG climate

bristol.ac.uk

Model fails to reproduce **colder-than**present North Atlantic Conditions

Model fails to reproduce warmer-thanpresent Southern Ocean Conditions

Model fails to reproduce warmer-thanpresent East Antarctic Conditions

130 ka

What about other models?

bristol.ac.uk

Reconciling the mismatch between data and model

Models **NOT** run with full 130 ka climate conditions:

- Interactive ice sheets
- Interactive vegetation
- Freshwater fluxes

What about the melting of the NH ice sheets from the previous glaciation?

How much freshwater?

Sea level rate was ~22 m/kyr at 130 ka during the glacial-interglacial transition (Grant et al. 2012)

130 ka

GHG ORB+GHG+FWF

130 ka

ORB+GHG ORB+GHG+FWF

130 ka

The effect of freshwater flux on Southern **Europe climate** at 130 ka

Model sensitivity to different University of BRISTOL amounts of freshwater

Model sensitivity to different University of BRISTOL amounts of freshwater

The effect of removing WAIS

ORB+GHG+FW+NOWAIS (130 ka)

Summer

Annual

bristol.ac.uk

Comparison with model simulations (ORB+GHG only) shows that:

- The models cannot predict the warmer-than-present-day conditions shown in North Atlantic records
- The reconstructed early Southern Ocean and Antarctic warming is not captured

Summary

Comparison with model simulations (ORB+GHG only) shows that:

- The models cannot predict the warmer-than-present-day conditions shown in North Atlantic records
- The reconstructed early Southern Ocean and Antarctic warming is not captured

MISSING processes/feedbacks in the models – **freshwater forcing from the penultimate glaciation?**

•The bipolar seesaw mechanism between the hemispheres at 130 ka can partially explain the asynchrony in hemisphere temperature response with a freshwater hosing of 0.2 Sv or more

•Lowering the WAIS with freshwater forcing only produces a small improvement in model-data comparison over Antarctica

Summary

Comparison with model simulations (ORB+GHG only) shows that:

- The models cannot predict the warmer-than-present-day conditions shown in North Atlantic records
- The reconstructed early Southern Ocean and Antarctic warming is not captured

MISSING processes/feedbacks in the models – **freshwater forcing from the penultimate glaciation?**

The bipolar seesaw mechanism between the hemispheres at 130 ka can partially explain the asynchrony in hemisphere temperature response with a freshwater hosing of 0.2 Sv or more
Lowering the WAIS with freshwater forcing only produces a small improvement

in model-data comparison over Antarctica

Some further points to consider:

- Not transient simulations
- Data needed in the vicinity of the WAIS
- What other feedback processes could fully reconcile the mismatch?
- Contributions of freshwater from the different ice sheets at the onset of the LIG

Difficulties to define robust age model in the Norwegian Sea !

Core MD95-2009 linked to core ENAM33 thanks to ash layer 5e-Low/bas-IV (orange dot) & climatic alignment.

Core HM71-19 aligned onto core MD95-2009 based on ash layers 5e-Midt/RHY & 5e-Low/bas-IV (orange dots) & climatic alignment.

\rightarrow Choice of the "Modern Reference" for marine records ?

SST measurements from WOA 1998 (10m-deep) vs Sediment core Top SST values

