

Evaluating the Roles of Orbital and Greenhouse Gas Forcing on Last Interglacial Climate using a General Circulation Model

Emma J. Stone¹ and Daniel J. Lunt¹ (With thanks to Pepjin Bakker, Stefan Ritz, Sylvie Charbit)

¹BRIDGE, School of Geographical Sciences, University of Bristol, UK

Background to the LIG

Climate

of ~2 - 5 C (IPCC, 2007)

What caused this warming?

1. Insolation changes

What caused this warming?

2. Greenhouse gas forcing

3. Other forcings?

"To characterise the baseline trend and variability of climate during the last interglacial"

Home	
What's New?	
Overview	
Events	
PMIP3-CMIP5 Design	
Model Output Database	
Paleodata Syntheses	
PMIP3 wiki	

	РМІРЗ			Alternative solution
Orbital parameters	varying, model interpolates values given on a 1k resolution. See values here: http://www.paleo.bris.ac.uk/~ggdj/pmip/orbit_pmip.out Values are given for 132-115ka .		es are given for 132-	
Date of vernal equinox	March 21 at noon			
Trace gases	varying, model interpolates values given on a 0.1k resolution. See values here: @http://www.paleo.bris.ac.uk/~ggdjl/pmip/pmip_hol_lig_gases.txt Values are given for 132-115ka.			
Aerosols	Same as PI			
Solar constant	1365 W/m ²		Boundary condition	ıs
Vegetation	Pre-industrial fixed		130ka (CORE - 1	INP PRIORITY
Ice sheets	Same as PI		TOURG (CONE	or maonari,
Topography and coastlines	Same as PI	Home What's New?	Orbital parameters	(ecc
		THILD FILEW.	Date of vernal equino	K

Please use the discussion panel to comment this table!

Following PMIP3 protocol...

vents

PMIP3-CMIP5

Design

Model Outp)atabase

Paleodata

128ka (EXTRA)				
	PMIP3	Alternative solution		
Orbital parameters	[ecc = 0.039017] - [obl = 24.131°] - [peri-180° = 259.65°]			
Date of vernal equinox	March 21 at noon			
Trace gases	$[\ {\bf CO}_2=275\ {\rm ppm}\]\ -\ [\ {\bf CH}_4=709\ {\rm ppb}\]\ -\ [\ {\bf N}_2{\bf O}=256\ {\rm ppb}\]\ -\ [\ {\bf CFC}=0\]\ -\ [\ {\bf O}_3=\ {\rm Same\ as\ Pl\ }]$			
Aerosolis	Same as PI			
Solar constant	1365 W/m ²	As in PI		
Vegetation	Pre-industrial fixed			
Ice sheets	Same as PI			
Topography and coastlines	Same as PI			

PMIP3

[ecc = 0.038209] - [obl = 24.242°] - [peri-180° = 228.32°] March 21 at noon CO2 = 257 ppm] - [CH4 = 512 ppb] - [N2O = 239 ppb] - [CFC = 0] - [O3 = Same as P

Same as PI

1365 W/m²

Same as PI

Alternative solution

Please use the discussion panel to comment this tabl

use the discussion panel to comment this tabl

125ka (CORE)

Aerosois

Solar constant

Vegetation

Ice sheets

	PMIP3	Alternative solution
Orbital parameters	[ecc = 0.040013] - [obl = 23.798°] - [peri-180° = 307.14°]	
Date of vernal equinox	March 21 at noon	
Trace gases	$[\ \textbf{CO}_2 = 276\ \text{ppm}\] - [\ \textbf{CH}_4 = 640\ \text{ppb}\] - [\ \textbf{N}_2\textbf{O} = 263\ \text{ppb}\] - [\ \textbf{CFC} = 0\] - [\ \textbf{O}_3 = \text{Same as PI}\]$	
Aerosois	Same as PI	
Solar constant	1365 W/m ²	As in PI
Vegetation	Pre-industrial fixed	
Ice sheets	Same as PI	
pography and coastlines	Same as PI	

The Models

Snapshots

Transients

	HadCM3	FAMOUS		
Ocean resolution	1.25° x 1.25°	2.5° x 3.75°		
Atmosphere resolution	2.5° x 3.75°	5° x 7.5°		
Vertical layers in the atmosphere	19	11		
Atmospheric time step	30 min	1hour		
Land-sea mask				

Experimental Design

- HadCM3 = SNAPSHOTS
- 4 simulations of 500
 model years: 130, 128,
 125 and 0 ka (BP)

FAMOUS = TRANSIENTS
132-115ka

V Forcings

University of

- Greenhouse gases on 100 year resolution
- Orbital parameters updated on 1000 year resolution

Forcings

University of **PD ISTOI**

- Greenhouse gases on 100 year resolution
- Orbital parameters updated on 1000 year resolution

LIG temperature: snapshots

Last interglacial temperature: transient

Last interglacial temperature: evaluation

Last interglacial temperature: evaluation

Last interglacial temperature: evaluation

Last interglacial: how do we compare with data?

- Time-series data?
- •Time-averaged data?
 >Summer peak temperature?
 - Summer average temperature?
 - >Warmest annual temperature?

>Annual precipitation-weighted temperature?

Understanding the role of GHGs and orbital forcing

- Sensitivity to major applied forcings and feedbacks in the transient simulations
- In order to ascertain their relative importance in determining the varying mean state and variability during the interglacials
- GHGs FIXED at Preindustrial values

Markov Temperature sensitivity

Sea-ice changes

HadCM3 snapshots

Value Inter-model comparison

Conclusions and outlook

- Climate snapshot simulations show ~5°C summer warming in Arctic region with peak warmth at ~128ka
- FAMOUS transient simulation shows global average peak warmth at 128ka
- Snapshot-transient comparison at 130, 128 and 125ka shows consistently lower global average temperature for the HadCM3 snapshots but... FAMOUS equilibrium simulations similar to the transient simulation
- Comparing transient simulations with time-averaged data: large discrepancy depending on how you average you transient simulation data for example
- Fixing GHGs at preindustrial values results in consistently higher globally averaged temperature anomaly throughout the LIG transient simulation
 - GHGs do not change the mean trend in global temperature (insolation controlled) rather they result in higher variability on shorter timescales

Conclusions and outlook

- Decrease in Arctic sea-ice extent with minimum around 128ka consistent with HadCM3
- Initial inter-model comparison shows similarity between all models in terms of global temperature for the period 125 to 120ka. Large discrepancy at 130ka –model spin-up issue?
- Large reduction in AMOC in FAMOUS compared with Bern 3D during LIG
- Analysis required to show trends in temperature/precipitation/sea-ice throughout the LIG
- Further transient simulations :
 - Inclusion of vegetation feedbacks
 - Freshwater forcing
 - Ice-sheets

Thank you

130 ka model comparison

125 ka model comparison

