

Modelling the impact of vegetation feedbacks on the minimum extent of the Greenland Ice Sheet during the Last Interglacial

Emma J. Stone, Dan J. Lunt and Paul J. Valdes

Outline •Background •Feedbacks •Previous Work •Experimental design •Results •Conclusions

Background: The Last Interglacial (LIG)

Background: Greenland during the LIG

- Palaeodata and AOGCMs indicate summer warming of ~2 - 5 C
- Annual temperatures similar to today
- Migration of boreal forest into regions now occupied by tundra in the Arctic

Background: Greenland during the LIG

- Sea level highstand of ~ 4 to 6m
 - reduction in the size of the Greenland ice sheet (GrIS)
 - possible reduction in the Antarctic ice sheet

What caused the warming during the LIG?

Feedback processes: amplification for LIG warming

- Ice-albedo feedback
- Ice-elevation feedback
- Vegetation-snow-climate feedback

Previous studies on GrIS contribution to sea level

Study	Method	Sea level (m)
Letreguilly <i>et al.</i> (1991)	Palaeothermometry & ice sheet model	~1.5
Cuffey & Marshall (2000)	Palaeothermometry & ice sheet model	4 - 5.5
Tarasov & Peltier (2003)	Palaeothermometry & ice sheet model	2 - 5.2
Lhomme <i>et al.</i> (2005)	Palaeothermometry & ice sheet model	3.5 - 4.5
Otto-Bliesner <i>et al.</i> (2006)	AOGCM output and ice sheet model	1.9 - 3.0

metres

Minimum extent of GrIS (IPCC, 2007)

A new approach

A new approach

A new approach

Experimental design: the models

HadCM3 (UK Met Office Model)

Coupled atmosphere-ocean sea-ice models
Ocean has a resolution of 1.25° x 1.25°
Horizontal resolution 2.5° x 3.75°
19 levels in the vertical

• Glimmer (Payne, 1999; Rutt et al., 2009)

PDD Surface mass balance model
 Coupled ice flow
 Thermodynamics & ice-thickness evolution

Isostatic readjustment

Experimental design: vegetation

Needle Leaf tree

Broadleaf tree

Experimental design

- Coupling HadCM3 to Glimmer computationally expensive
- Perform 12 100 year equilibrium HadCM3 simulations
 - 6 FIXED vegetation
 - 6 DYNAMIC vegetation

White University of

BRIST

--- Evolution of climate with time

Results: GrIS minimum extent

FIXED VEGETATION

124.5ka

124.5ka

metres

DYNAMIC VEGETATION

124.0ka

124.0ka

Results: annual precipitation

Results: summer temperature

Results: vegetation cover

Conclusions

- A summer warming of ~5 C is observed at 130ka consistent with previous studies
- A similar experiment to the GCM study by Otto-Bliesner *et al.* (2006) results in a more conservative estimate of ~1.0 m sea level rise
- Sea-level change evolves through time with a maximum at ~124 to125ka and a decrease thereafter broadly consistent with palaeo sea-level data
- Evolution of ice volume and extent of the GrIS is *insensitive* to the initial conditions chosen in this set of experiments
- Without vegetation feedbacks the maximum contribution to sea-level relative to 130ka is 1m compared with 2.4m when interactive vegetation is included
- In accordance with palaeo-data for the minimum extent of the GrIS, the Dye-3 core only becomes ice-free when vegetation feedbacks are included
- Only the simulations with interactive vegetation fall within the broad GrIS sea-level contribution from recent studies (1.9 to 5.5m)
- Less than half of the sea-level highstand (~4-6m) observed during the LIG comes from the GrIS indicating another source e.g. West Antarctic ice sheet
- Provides a potentially important analogue for future sensitivity of the GrIS to a warming climate

 Repeat experiments for 'tuned' set-ups of the ice sheet model

 Further investigation using different initial conditions

Thank you

emma.j.stone@bristol.ac.uk

Results: how much difference did the methodology make?

