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Abstract 

Sea surface and subsurface temperatures over large parts of the ocean during the Eocene epoch 

(55.5–33.7 Ma) exceeded modern values by several degrees which must have affected a number of 

oceanic processes. Here we focus on the effect of elevated water column temperatures on the 

efficiency of the biological pump, particularly in relation to carbon and nutrient cycling. We use 

stable isotope values from exceptionally well-preserved planktonic foraminiferal calcite from 

Tanzania and Mexico to reconstruct vertical carbon isotopes gradients in the upper water column, 

exploiting the fact that individual species lived and calcified at different depths. The oxygen isotope 

ratios of different species’ tests are used to estimate the temperature of calcification, which we 

converted to absolute depths using Eocene temperature profiles generated by General Circulation 

Models. This approach, along with potential pitfalls, is illustrated using data from modern core-top 

assemblages from the same area. Our results indicate that during the early and middle Eocene, 

isotope gradients were steeper (and larger) through the upper thermocline than in the modern ocean. 

This could have been caused by a number of oceanic phenomena but is also consistent with a 

shallower average depth of organic matter remineralisation. This supports previously proposed 

hypotheses that invoke high metabolic rates in a warm Eocene ocean, leading to more efficient 

recycling of organic matter and reduced burial rates of organic carbon.  

 

Index words: Eocene; planktonic foraminifera; biological pump; stable isotopes; carbon cycling 

temperature. 

 

1. Introduction 
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There are many concerns about the impact of anthropogenic global warming on the oceans, 

including changes to thermal structure, circulation patterns, oxygenation and pH (e.g., [1, 2]). The 

effect of a warmer ocean on the efficiency of the marine biological pump has also been emphasised, 

due to the fact that respiration rates in remineralising microbes are temperature-dependent (e.g., [3-

6]) and may be important for understanding the response of the carbon cycle to current warming 

trends on short and geological timescales. To predict the effects of warming, these processes can be 

modelled (e.g., [4]); another approach is to examine them for warm climate states in the past. 

 

During the Eocene epoch (55.5-33.7 Mya), global mean temperatures were undoubtedly higher than 

today and the poles are thought to have been largely ice-free. Evidence for Eocene warmth in 

marine and terrestrial realms is diverse and includes records of the distribution of biological taxa 

(e.g., the presence of cold-blooded animals and frost-intolerant plant species at high latitudes; [7-9]) 

and analysis of leaf morphology (e.g., [10]). The oxygen stable isotope ratio (δ18O) of deep sea 

benthic foraminifera [11-14] shows that bottom waters likely exceeded 10-12 °C in the early 

Eocene, cooling to 5 °C by the end of the epoch (e.g., [13, 14]). This trend was interrupted by 

intervals of relatively stability or transient warming events, such as at the Middle Eocene Climatic 

Optimum (MECO; [15, 16]). Sea surface temperatures, reconstructed using the δ
18

O values of well-

preserved planktonic foraminifera [17] and organic proxies also indicate warmer temperatures than 

the modern throughout the Eocene, particularly at high latitudes (e.g., [18, 19]). Tropical 

temperatures remained relatively warm and roughly constant during the Eocene, which suggests 

that the cooling occurred mainly at high latitudes [17, 18]. Although there is some quantitative 

disagreement between proxies, the general implication that large areas of the open ocean were 

warmer than the modern for most of the Eocene is sound, and it is unlikely that global Eocene 

temperatures have been exceeded since. 

 

Elevated seawater temperatures could have affected the state of the Earth system in many ways, for 

example causing changes in ocean circulation, evaporation patterns, cloud formation, latent heat 

transfer to the atmosphere and increased storminess over large areas [20, 21]. Higher ocean 

temperatures may also have affected the biological pump, that is, the biologically-mediated 

transport of organic carbon out of the surface ocean to the ocean interior before it is remineralised 

back to CO2 (e.g. [22]; Fig. 1). Bacterial respiration is one of the main ways that sinking organic 

matter is decomposed and carbon and nutrients that were fixed near the surface through 

photosynthesis are recycled at depth. Because the metabolic rates of these remineralising bacteria 

are temperature-dependent, elevated ocean temperatures may result in more efficient recycling of 

carbon and nutrients higher in the water column thus affecting the amount of sinking carbon that 
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reaches the deep sea and sea floor sediments. Because microbial respiration produces CO2 this 

would also alter the distribution of dissolved inorganic carbon (DIC) in the water column as well as 

potentially affecting atmospheric CO2. If the oceans were indeed globally warmer during the 

Eocene, these effects may also have been global and therefore need to be addressed if we are to 

understand global carbon cycling. This was emphasised by Olivarez Lyle and Lyle [23] who 

postulated that higher Eocene temperatures and enhanced remineralisation rates were responsible 

for reduced organic carbon burial rates in the deep sea. Such effects may have been an important 

feedback on global climate throughout the Phanerozoic [4, 24].  

 

Bacterial remineralisation of organic matter also results in the redistribution of carbon isotopes in 

the water column: photosynthetic carbon fixation in the photic zone preferentially removes12C 

leaving the remaining DIC pool with elevated δ13CDIC values; upon sinking, microbes respire this 

organic matter and return the isotopically light carbon to the DIC pool. This is reflected in a general 

decrease in δ
13

CDIC values with depth in the upper part of the water column (Fig. 1). Potentially, 

depth stratified planktonic foraminifera can also record this process of organic matter 

remineralisation as a decrease in the δ13C of their test calcite with increased water depth habitat 

(e.g., [25]). The actual shape of δ
13

CDIC:depth profiles are highly variable worldwide and among the 

main controls on the shape of the profile are the depth and efficiency of remineralisation processes 

in the water column.  

 

In this contribution we investigate these effects by using assemblages of exceptionally well-

preserved planktonic foraminifera from the Eocene of Tanzania and Mexico to reconstruct the 

vertical gradient of stable carbon isotope ratios in DIC (δ
13

CDIC) in the water column for various 

timeslices throughout the epoch. This has not previously been carried out using foraminifera that 

have not been subject to the micron-scale recrystallization that is common in deep sea carbonates; 

this is important because such recrystallization can dampen surface-to-deep δ
13

CDIC offsets. We use 

these profiles to decipher information about water column processes, including the efficiency of the 

biological pump during the Eocene in comparison with today.  

 

2. The Metabolic Hypothesis and the Q10 relationship 

 

There is a rich literature on the effects of temperature on biological activity. Arrhenius [26] 

described the exponential increase in inorganic reaction rates with temperature in terms of ‘Q10’, the 

fractional increase in reaction rate for every 10 °C increase in temperature. It has long been known 

that metabolic rates in ectothermic organisms also follow the Q10 pattern and show a very 
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approximate doubling per 10 °C increase (i.e. Q10  = ~ 2.0). This includes marine and terrestrial 

microbial decomposers whose measured Q10  activities lie between ~ 2 and 4 [27-31]. The Q10 

pattern can also be used to describe the temperature dependence of metabolic rates in a more 

diverse range of life forms, from unicellular ectotherms to large endothermic mammals, with other 

factors such as body size playing important additional roles; these relationships have been expanded 

to describe entire complex ecosystems in terms of the role that temperature plays in regulating an 

ecosystem’s 'metabolism' [32-34]. 

 

Theory predicts that metabolic rates in all oceanic planktonic communities should be strongly 

dependent on temperature (e.g., [32-36]). Importantly, while both rates of respiration and rates of 

photosynthesis should increase with increasing temperature, the effect of temperature is stronger on 

heterotrophic communities (respirers) than it is on autotrophic communities (photosynthesisers) 

[36] leading to an increasing dominance of heterotrophic activity in warmer waters. This has been 

demonstrated in the modern oceans [3, 6, 37]. Based on a large database of 1156 volumetric 

estimates of oceanic planktonic metabolism and temperature measurements, Regaudie-de-Gioux 

and Duarte [6] demonstrated strong relationships between both gross primary production and 

community respiration rates and temperature and found average Q10 values for the whole ocean of 

1.56 for gross primary production and 2.52 for community respiration. The rates of increase in 

metabolism with temperature were comparable in the two hemispheres but different between ocean 

basins and between seasons, reflecting changes in planktonic community structure. The positive 

relationship between temperature and the ratio of heterotrophic/autotrophic activity appears to be 

strong below 20-21 °C [3, 6] with a weaker relationship at higher temperatures due to an overall 

dominance of heterotrophs [3]. Feedbacks on the global carbon cycle are likely because areas of net 

heterotrophy represent sources of CO2 to the atmosphere provided there is an allochthonous source 

of food for the microbes [37]. 

 

These relationships also have a bearing on the biological pump as enhanced rates of organic carbon 

remineralisation could reduce the amount of carbon reaching the deep ocean and the seafloor. Laws 

et al. [3] used a complex pelagic food web model to investigate controls on modern export 

production including ecological interactions, controls on the metabolic rates of different organisms 

and other dynamic processes. They concluded that temperature variations could account for >80 % 

of the variance in their modelled export production. Several studies have used modelling results to 

emphasise the affect of temperature-dependent remineralisation on the strength of the organic 

carbon pump, atmospheric CO2 and nutrient distribution in the ocean, primarily on glacial-

interglacial timescales where we have a wealth of data to cross-check with the model. Matsumoto 
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[4] used results from an intermediate-complexity climate model to account for around a third of the 

changes in CO2 between Plio-Pleistocene glacials and interglacials by invoking suppressed 

microbial activity and a stronger organic pump strength during colder glacials. This led to a lower 

relative export rate of CaCO3 versus Corg to the deep seafloor (i.e., a lower ‘rain ratio’). From a 

comprehensive map of rain ratios and their high resolution regional ocean ecosystem model 

Matsumoto [4] proposed that today’s rain ratios are controlled at least in part by temperature 

through both enhanced remineralisation of organic matter and temperature dependence of 

community composition. Chikamoto et al. [38]’s model simulations include temperature-dependent 

remineralisation rates and these authors came to similar conclusions about the importance of 

temperature in controlling export production. 

 

Although some authors have warned that global increases in ocean temperature could result in both 

increased pCO2 levels and decreased rates of burial of organic carbon (e.g. [4]), these ideas have 

been little discussed in relation to the warm oceans of the Eocene or indeed other warm climates of 

the past. However, it seems clear that the effects of temperature on the biological pump could have 

strong implications for our understanding of controls on carbon cycling in ancient greenhouse 

worlds. Gu et al. [39] proposed that a warmer ocean would increase rates of methanogenesis in 

seafloor sediments thus providing a source for the isotopically light carbon released during Eocene 

hyperthermals. However, a warmer ocean would presumably also affect rates of aerobic respiration 

of sinking organic matter in this context. Olivarez Lyle and Lyle [23] suggested that the 

discrepancy between percentages of biogenic Ba (an indicator of primary productivity) and organic 

matter preserved in early Eocene sediments from the equatorial Pacific could be explained through 

increases in microbial respiration rates in a warmer ocean and a subsequent reduction in the burial 

rate of organic carbon. They also suggest that increased dissolved inorganic carbon (DIC) 

concentrations in the water column (caused by enhanced biogenic production of CO2) relative to 

alkalinity inputs from weathering on land and subsequent shoaling of the carbonate compensation 

depth (CCD) would lead to reduced inorganic carbon burial. This relatively simple model involving 

positive feedbacks was suggested as a mechanism for maintaining high pCO2 levels in greenhouse 

worlds and inversely low greenhouse gas concentrations in icehouse worlds ([23], see also [24]).  

 

There are various complications with these ideas. For example, it is difficult to conceive how 

elevated pCO2 levels can be maintained by these processes in light of the tight inorganic feedbacks 

that mediate atmospheric CO2 change, such as silicate weathering [40]. It has also been suggested 

that calcium carbonate, the dominant test mineralogy among Eocene plankton, is a more effective 

ballasting agent than biogenic opal, which dominates planktonic communities today, more rapidly 
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transporting organic matter to the seafloor for subsequent burial [41-43] although recent work 

suggests that the importance of mineral ballasting may have been over-estimated [44]. The effects 

of enhanced remineralisation on oxygen concentrations should also be carefully considered as 

oxygen (produced during photosynthesis) is consumed during microbial respiration. The effects on 

the distribution of oxygen minimum zones (OMZ) in the oceans should also be considered although 

at present the distribution of OMZs is mainly controlled by large-scale circulation patterns. Despite 

these considerations, it is clear that there were likely radical differences between the ways in which 

the marine biological pump operated in the warm Eocene compared with today; this study represent 

an attempt to detect such differences using the stable isotope record of foraminiferal calcite.  

 

3. The Tanzania foraminifer stable isotope record 

 

Foraminifera are unicellular protists that are abundant in oceanic environments. Some species are 

benthic; others live as plankton, with habitats distributed through the upper part of the water column 

(e.g.,[45]). Foraminifera secrete ‘tests’ (shells) of calcium carbonate that accumulate on the sea 

floor after death and can be a major component of pelagic sediments. A suite of geochemical 

proxies can be extracted from foraminifer tests to provide information about the water in which they 

calcified; here we focus on a combination of oxygen and carbon isotope ratios. 

 

The oxygen isotope ratio of calcite is dependent in part on the temperature of the water in which it 

calcified: δ18O values increase with water depth in accordance with the accompanying decrease in 

temperature (e.g., [12, 46]). The carbon isotope ratio of calcite depends largely on that of the 

bicarbonate ion, HCO3
-
, from which it precipitated [47] which, in turn, reflects air-sea exchange 

processes in the surface ocean and biological activity. There is a non-linear relationship between 

δ
13CDIC and depth because of the photosynthetic fixation of isotopically light carbon in the surface 

ocean and its subsequent remineralisation at depth (Fig. 1). However, stable isotope ratios in 

foraminiferal tests are also affected by other factors, which mean that calcification does not occur in 

isotopic equilibrium with ambient seawater (see below). Insights into such disequilibrium effects in 

modern assemblages were made by Birch et al. ([48]; Section 4) and their observations are applied 

in this study.  

 

Here we use stable isotope ratios of planktonic foraminifera from Eocene hemipelagic sediments of 

Tanzania as published as Supplementary Information to Pearson et al. [17] and in Wade and 

Pearson [49] and from an Eocene shale of eastern Mexico (the Guayabal Formation), as published 

in Pearson et al. [50]. The significance of the carbon isotope data has not previously been discussed. 
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These Tanzanian and Mexican data are particularly valuable as they are derived from exceptionally 

well-preserved assemblages with no evidence of micron-scale recrystallization ([17, 50]; see also 

[51]). This is important because such diagenesis can have a large effect on the stable isotope 

composition of foraminiferal tests, including δ13C [17, 52], despite claims to the contrary (e.g., 

[53]). The Tanzanian assemblages represent those typical of open ocean conditions, complete with 

deep dwelling forms, and were deposited in an upper bathyal environment [54, 55]. The single 

Mexican dataset also represents a typical open ocean assemblage. The ages of the core samples are 

determined by foraminiferal and nannofossil biostratigraphy [17, 50]. Recent advances in Eocene 

biostratigraphy have resulted in significant changes in the ages of several bioevents in the earliest 

middle Eocene; we have therefore updated the age of each sample in comparison to the previous 

publications as per Wade et al. [56]. The Tanzanian samples range in age between 54.90–33.75 Ma 

and the single Mexican sample is dated at 42.05  ± 1.55 Ma. During these times relatively warm 

conditions prevailed in Tanzania and eastern Mexico with reconstructed sea surface temperatures in 

the range 30-34.5 °C [17, 49, 50] (compared with 29-30 °C for the modern; [48]). 

 

4. Multi-species and dissolved inorganic carbon in the modern 

 

In this section we describe the approach of reconstructing water column δ13CDIC gradients using 

stable isotope data from foraminiferal assemblages by summarising data from a modern core-top 

assemblage from offshore Tanzania, as studied by Birch et al. [48]. Although limited to one 

location, this study is useful in presenting data from a wide range of planktonic foraminifera shell 

sizes (80-800 µm, taxon dependent) for each species investigated. The results provide new insights 

into foraminiferal test δ
13

C variability that refine our ability to recognise several vital effects, 

including disequilibrium effects, in geochemical data from fossil assemblages.  

 

Birch et al. [48] measured δ
13

C and δ
18

O values in 12 species of planktonic foraminifera from a 

single core-top sample. Using a series of sieves with increasing mesh size, a total of 60 species-

specific, size-controlled splits were separated (each consisting of multiple shells) so that the effects 

of size and species on the isotope ratios could be investigated in detail. Figure 2 shows the δ
13

C and 

δ
18O data from the multispecies size fraction splits plotted against each other. The variability along 

the δ18O axis primarily reflects the depth of calcification (with warmer waters, i.e. lower δ18O 

values, near the surface) and seasonal variations. Birch et al. first used their δ18O values to 

determine temperature using the equation of Erez and Luz [57] and then overlaid this temperature 

on the measured water column temperature profile to estimate absolute depth of calcification. They 

used water column δ13CDIC measurements from a range of locations near their study site to 
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determine the approximate values that would result if the foraminifer tests had calcified in 

approximate isotopic equilibrium with ambient seawater temperature and δ13CDIC under conditions 

of ‘normal’ water column structure. Measurements from a range of settings (~2500 m to >5000 m 

water depth) within ~800 km of their study site [82] yielded similar shaped profiles and absolute 

values and a compilation of these values is represented by a grey band in Figure 1 (see [48] for 

details). The width of the band was also intended to account for seasonal effects. The fact that Birch 

et al.’s  data do not all fall close to this band or any single line in Figure 2 implies that other factors 

are influencing the δ13C values. The position of the data with respect to the typical ‘equilibrium 

line’ helps demonstrate four main types of effect (illustrated in Figure 2): 

 

1) The metabolic fractionation effect. Foraminifera that are smaller than the 212 µm sieve size 

(either adults of relatively small species or the juvenile stages of larger species) tend to have 

δ
13C values that are more negative than ambient seawater, the offset being greatest for the 

smallest size fractions [58]. This is thought to be due to the incorporation of a fraction of 

isotopically light carbon from organic matter that has previously been respired by the 

foraminifer itself. The fraction of metabolic carbon in the foraminifer test decreases as the 

foraminifer grows, as the rate of metabolic activity decreases and exchange of carbon with 

ambient seawater improves [58-63]. 

2) The photosynthetic fractionation effect. Many species of near-surface dwelling planktonic 

foraminifera have a symbiotic relationship with photosynthesizing algae, mainly 

dinoflagellates. These algae preferentially remove 12C during photosynthesis, leaving the 

remaining seawater isotopically heavy with respect to ambient DIC; such locally elevated 

δ
13

C values may then be recorded by the foraminifera [25, 64-69]. As foraminifera grow to 

larger sizes, so the cloud of algae surrounding the foraminifer test increases and the 

photosynthetic effect is increasingly pronounced in successive size fractions. This becomes 

particularly marked in the tests of symbiotic species over about 355 µm in diameter [48]. 

3) The pH fractionation effect. A few species are adapted to deep-water habitats close to the 

oxygen minimum zone where the pH is reduced. Such species may have δ13C values that 

show a positive offset from equilibrium values and it has been postulated that this is due to 

pH-dependent fractionation effects [47, 48, 70]. 

4) The seasonal upwelling effect. Certain species, including Globigerina bulloides and the 

small species Globigerinita glutinata, as discussed in the study of Birch et al. [48], together 

with Neogloboquadrina dutertrei [71-73] are indicative of more productive tropical surface 

conditions linked to seasonal upwelling [72-74]. The δ
13

C composition of such species’ tests 

is therefore more similar to that of deeper-dwelling species because they record the isotopic 
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chemistry of cool, 12C-rich, upwelling deep waters. It should be noted however that these 

species only make up a small proportion of those presented in Figure 1 which otherwise 

resembles an oligotrophic assemblage [48]. 

 

To counteract these effects when reconstructing the water column δ13CDIC gradient, Birch et al. [48] 

recommend that surface mixed layer δ
13

C values are best estimated using foraminifera in the middle 

of their size range, i.e. 212-355 µm (Fig. 2), and if deep-dwelling species show unexpected scatter 

in their δ13C values, then ambient δ13C is best estimated using the more negative values. From 

Figure 2 it can be seen that these relatively simple rules apply reasonably well to the modern data 

set. Some scatter is always expected due to seasonal and inter-annual variability in water column 

structure and chemistry at any given site. Another complication is that some species might change 

their position in the water column during its life cycle; in particular, some surface dwelling 

symbiotic forms sink in their final life stages to reproduce, forming a crust of gametogenic calcite 

[64]. The measured stable isotope values in adult size fractions of such species will plot on a mixing 

line between the two depth habitats (Figs. 2, 3). This effect is not obvious in the modern data of 

Birch et al. [48] although it may be responsible for some of the differences in δ18O between 

symbiont-bearing species such as Globiginerinoides sacculifer, G. ruber and Orbulina universa. It 

does, however, seem to be more pronounced in data from certain genera of fossil planktonic 

foraminifera (see below). Figure 3 is a simple interpretative cartoon modified from Pearson and 

Wade [75] summarizing these effects and how they can be identified in the fossil data sets used in 

this study.  

 

5. Eocene reconstructions 

 

We reconstructed water column δ13CDIC profiles for several Eocene timeslices by the following four 

steps: 

1) We plotted the δ18O and δ13C values for each species/size fraction against each other and 

used the criteria of Birch et al. [48, 76] discussed above to identify those data points that are 

considered to represent disequilibrium/upwelling effects or that plot along a mixing line 

between two distinct depth habitats (Fig. 3). We used an optimal growth stage/shell size 

window of 212-355 µm. 

2) The δ18O values for the chosen species/size fractions were converted into calcification 

temperatures using the equation of Kim and O’Neil [77]. We used an Eocene ice volume 

correction of -0.75 ‰ according to Cramer et al. [78] and we applied a seawater latitude 

correction of +0.83 [79] assuming a palaeolatitude of 19°S. 
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3) The depth of calcification for each of these samples was estimated by fitting these δ18O 

temperatures to modelled Eocene water column temperature profiles for offshore Tanzania 

and the south-east Gulf of Mexico [80, 81]. 

4) We plotted the corresponding δ13C values against the reconstructed calcification depth for 

each data point. The resulting Tanzanian δ13CDIC:depth profiles were compared to the 

modern profile for offshore Tanzania (a composite of the profiles used in Birch et al. [48], 

from the World Ocean Database 2009 [82], is shown in Fig. 5 A-Giv). 

 

To carry out step 3), Eocene temperature:depth profiles for offshore Tanzania and the south-east 

part of the Gulf of Mexico were extracted from published Eocene General Circulation Model 

reconstructions. In the case of Tanzania these were generated by the NCAR (National Center for 

Atmospheric Research) model and also the HadCM3 (Hadley Centre Model, version 3) model for 

comparison. The NCAR model profile [81] was generated for a continental margin adjacent to the 

east African coast centred around a latitude of ~18.2 °S and for a slope extending from 0 m water 

depth down to a water depth of 1500 m (Fig. 4). Experiments using different climate forcings of 

1120, 2240 and 4480 ppmv atmospheric pCO2 changed the absolute temperatures but not the shape 

of the temperature:depth profiles. We selected the profile generated by the pCO2 condition that 

produced sea surface temperatures consistent with those estimated from the mixed layer 

foraminiferal δ18O data from our multispecies dataset [17]. For example, the profile generated using 

4480 ppmv pCO2 was used for the early Eocene assemblages, and those generated using 2240 ppmv 

and 1120 ppmv pCO2 were used for the middle Eocene and late Eocene timeslices, respectively. In 

the different pCO2 scenarios, the temperature gradient between the surface and 1500 m was always 

18-20°C and, at all depths, even near the coast and at maximum water depths, most of the 

temperature gradient is above 600 m; i.e. this reconstruction should be relevant even for the 

shallower palaeodepth estimates. For the HadCM3 model [80], a forcing of 1680 ppmv pCO2 was 

applied and the generated profile (Fig. 4) represents that for a grid box centred around 41.25° E and 

20° S for a water depth of up to ~4500 m. The shapes of the profiles generated by the two different 

models are consistent and both show distinct differences compared with the modern profile for 

offshore Tanzania (from in situ temperature measurements; Fig. 4). Not only are the Eocene 

temperature:depth profiles offset to warmer temperatures over the entire water column compared 

with the modern Tanzania profile, the overall surface-to-deep temperature offsets are smaller. The 

thermocline is also broader in the Eocene profiles with a roughly constant rate of temperature 

change down to 600 m compared with a modern thermocline that extends down to ~150 m. To 

determine the absolute depths for our foraminifera sample data, we used a logarithmic regression of 

the data generated by the NCAR model from the surface to a depth of 600 m (as this was most 
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consistent with the hemipelagic slope setting and benthic δ18O temperature estimates). The δ18O-

derived temperatures for each data point (derived in Step 2) were input into the equation generated 

by this regression to give an absolute water depth. For the single dataset from the Guayabal 

Formation, Mexico, a temperature:depth profile was also generated using the NCAR model [81] 

and a climate forcing of 2240 ppmv pCO2 for an area in the south-east part of the Gulf of Mexico 

from the coast down to 1500 m water depth (Fig. 4). Modern temperature:depth measurements for 

this area were obtained from the World Ocean Atlas 2009 database [83]; the curve in Figure 4 

represents a composite of 7 profiles between 19.5 and 22.5 N and -95.5 and -96.5 W. Both profiles 

are also shown in Figure 4. A logarithmic regression of the data generated by the NCAR model 

from the surface to a depth of ~300 m (consistent with the neritic zone palaeoenvironment of the 

Guayabal Formation) and absolute water depths determined as for Tanzania. The significance of the 

model results are discussed in Tindall et al. [80] and Huber et al. [81]. 

 

The carbon and oxygen isotope crossplots and the step-by-step reconstruction of the δ13CDIC:depth 

profiles are illustrated in Figure 5. The mixed layer species, that is those with the lowest δ18O 

values, in the early and middle Eocene samples are mainly from the muricate genera Acarinina, 

Morozovella, Morozovelloides and Igorina which are interpreted as having had obligate symbiotic 

algae [67, 84, 85]. The majority of symbiotic δ13C enrichment in these species, which has the effect 

of exaggerating the surface-to-deep δ13CDIC gradient, has been minimised by only using species 

within the 212-355 µm test size range, as discussed above (Fig. 5Aii-Fii). Other near-surface 

calcifiers include the apparently non-symbiotic genera Pseudohastigerina, Planoglobanomalina 

[86] and Chiloguembelina [87]. Other genera present include Dentoglobigerina, Turborotalia, 

Parasubbotina, Subbotina, Hantkenina and Catapsydrax whose lower δ13C and higher δ18O values 

indicate calcification at greater depths. Species belonging to the genera Globigerinatheka, 

Orbulinoides, and Guembelitrioides tend to have isotopic compositions suggestive of mixed layer 

calcification followed by further gametogenic calcification at greater depth. This is consistent with 

observations as these genera typically show gametogenic calcite crusts (e.g., [84, 88]; hence these 

data were not used to generate the δ
13

C:depth profiles (Fig. 5).  

 

The one late Eocene assemblage (Fig. 5G) differs in composition from the others in part due to the 

large assemblage turnover in planktonic foraminifera in the late middle Eocene that resulted in the 

extinction of the morozovelloidids and larger acarininids [89]. Constructing a realistic δ13C profile 

for this assemblage is problematic given the limited mixed layer data. We include the plots for 

completeness but restrict our interpretation to the early and middle Eocene reconstructions pending 

further investigation of late Eocene assemblages. 
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There are two common features to the early and middle Eocene profiles:  

1) The carbon isotope profile appears to have been much steeper through the upper thermocline 

than is typical of the oceans in this area and most of the world. The modern δ13C profile for 

this part of the Indian Ocean [48, 82] shows a fairly constant rate of decrease down to ~1 

km, with little change beyond this depth. Conversely, the early and middle Eocene profiles 

consistently show a sharp decrease in δ13C concentrated between the mixed layer and ~100-

150 m depth.  

2) The overall surface-to-deep offsets in the early and middle Eocene δ
13

C profiles are large 

relative to today, even when the Suess effect is taken into account. In the modern western 

Indian Ocean at this latitude the total gradient is ~1-1.5 ‰. On a global scale, modern 

surface-to-deep gradients rarely exceed 2 ‰ [90]. Similar gradients have also characterised 

at least the last 20 million years [91].  However, the early and middle Eocene profiles show 

δ
13

C offsets of 2-4 ‰. Similar values, and overall surface-to-deep gradients (2-3 ‰), have 

been previously reported for the early and middle Eocene even from recrystallised 

foraminifera from a variety of latitudes in the Atlantic, Pacific, Indian and Mediterranean 

basins (e.g., [50, 53, 92]); recrystallisation should dampen surface-to-deep δ
13

C gradients as 

measured in foraminifera tests and so many of these datasets may underestimate the offsets. 

In terms of absolute values, surface values in our dataset are mostly elevated compared with 

today; deepwater values are comparable.  

 

We consider it unlikely that features 1) and 2) are an artefact of the modelled water column 

temperature:depth profile. For example, if the modelled profiles had underestimated the temperature 

gradient in the upper ocean and the profile shape was more similar to the modern, the reconstructed 

δ
13

DIC:depth gradients would be even steeper through the upper thermocline as the range of δ18O 

values (and therefore temperature) measured in the assemblage is small. However, if the models 

had overestimated the temperature:depth gradient and water column temperatures were actually 

more vertically homogenous, we could admittedly have generated a δ13
DIC:depth gradient that was 

artificially steep in the upper ocean. Nonetheless, the large range of δ
13

DIC values measured in the 

Tanzanian and Mexican foraminifera assemblages suggests that strong vertical mixing was not 

occurring at those sites. 

 

Another potential source of uncertainty relates to the issue of Eocene water depths and coastal 

proximity which can be difficult to determine precisely for hemipelagic deposits and may have 

varied with time. The Kilwa Group of Tanzania comprises several kilometre successions of 
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relatively monotonous clays and claystones with occasional turbidite interbeds [54, 55]. The 

palaeoshoreline is estimated to have been generally about 50 km from the site of deposition [93] 

and palaeodepths have previously been estimated at 300-500 m based on upper bathyal benthic 

foraminiferal assemblages (e.g., [55]). However, the deeper limit of this estimate is very uncertain, 

and given the narrow shelf and steep slope that is typical of the East Africa margin, it is quite 

possible that palaeodepths were considerably greater than this. Both the foraminifera and 

nannofossil assemblages indicate a fairly constant, open, deep, and relatively oligotrophic 

environment; there are no restricted assemblages or conspicuous shelf-restricted or eutrophic taxa 

[51]. Coring of modern hemipelagic sediments offshore Tanzania has revealed that silty clays of 

similar facies to the Kilwa Group are currently being deposited at depths of 500 m to 1800 m within 

50 km of the shoreline [94] hence a more conservative depth estimate for the Eocene sediments 

would be 300 – 1800 m. For both modern and Eocene environments it is likely that onshore 

currents brought gyre water onto the continental slope, lending an oceanic rather than coastal 

character to the water column. Therefore, although we acknowledge that these issues do introduce 

uncertainty into our approach, we also argue that it is not reasonable to rule out the idea that the 

Eocene and modern datasets represent similar palaeoenvironments. 

 

In addition, although all Eocene planktonic foraminifera are extinct, we can envisage no plausible 

vital effect or other fractionation factor that would have affected the surface dwelling forms in a 

way that could produce such heavy δ
13

C values as seen in Figure 5. Even if we have inadvertently 

included values affected by symbiotic effects, such effects are only ~1 ‰ or less in the modern and 

can therefore not explain the differences fully. An obvious question, then, is to ask whether these 

surface dwellers had more pronounced symbiotic effects than modern forms. It may also be that the 

isotopic fractionation factor associated with primary production (i.e. that associated with symbionts) 

was higher before the late Eocene due to effects relating to elevated pCO2 levels, growth rates 

and/or volume to surface area ratios in primary producers [95, 96]. However, published 

relationships between δ13C and test size for muricate species (acarininids and morozovellids) from 

warm Palaeocene/Eocene oceans have similar or indeed shallower gradients to modern planktonic 

foraminifera with obligate symbionts, such as Globigerinoides ruber and Gs. sacculifer [67, 76, 97, 

98] suggesting that, if anything, the symbiotic effect was less pronounced. Hence the data suggest 

that vertical carbon cycling operated very differently in the early and middle Eocene than is typical 

in the modern ocean. 

 

6. Interpretation  
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The fact that the δ13CDIC decreases so sharply through the upper thermocline and to such a degree in 

the Eocene time slices compared with most modern oceanic environments is notable. One control 

on the depth of the δ
13

CDIC minimum is oceanic circulation and different oceanic circulation/mixing 

patterns in the Eocene compared with the modern, for example a shallower mixed layer (perhaps 

due to reduced wind induced mixing), or enhanced oceanic stratification relating to a warmer 

climate, could have contributed to the sharper, shallower decrease in δ
13

CDIC. Additionally, faster 

rates of remineralisation of sinking organic matter below the mixed layer could partly explain the 

shape of the profile. Indeed, the shape of the profiles imply that the majority of remineralisation of 

sinking organic matter was occurring at a much shallower depth than is typical in the modern. 

Reconstructed sea surface temperatures offshore Tanzania and the Gulf of Mexico in the Eocene 

were only about ~2-4 °C greater than today which is not sufficient to affect remineralisation rates 

greatly, particularly at temperatures so much higher than ~20 °C. However, at a depth of ~150 m, 

Eocene water temperatures were ~10 °C higher than today (Fig. 4; [80, 81]); this means that if, for 

example, heterotrophic community respiration had a Q10 value of 2 (a conservative estimate, e.g. 

[6]), respiration rates could quite reasonably have been twice as high at these depths than in the 

modern. Therefore, any temperature-related increase in microbial metabolic activity rates would 

have been more pronounced below the mixed layer than at the surface, that is, in the zone of net 

respiration rather than net photosynthesis. We acknowledge that there are controls on the shape of 

the vertical δ13CDIC profile other than temperature-dependent remineralisation and that to 

understand how these factors affect how δ
13

CDIC changes with depth requires detailed modelling. 

However, we propose here that the shape of the δ13CDIC:depth profile could have resulted, at least in 

part, from the fact that there was a much greater temperature difference at depths below the mixed 

layer (Fig. 4) which in turn led to more rapid rates of organic matter remineralisation.  

 

If biogenic remineralisation of organic carbon was more efficient in the Eocene water column due 

to elevated water temperatures, given that warmer-than-modern water temperatures extended to 

high latitudes, these findings may have had global significance. As proposed by Olivarez Lyle and 

Lyle [23], Stanley [24], and other authors focusing on the importance in terms of modern climates 

(e.g., [3, 4, 6]) this may have affected the transport of organic matter to the deep ocean and may 

have ultimately reduced rates of organic carbon burial and indeed inorganic burial through an 

increase in the DIC reservoir a shoaling of the carbonate compensation depth (CCD). This could 

have pushed pCO2 levels even higher thus supporting a positive feedback mechanism keeping pCO2 

levels high during greenhouse periods (when remineralisation rates are high) and low during 

icehouse conditions (when remineralisation rates are lower). However, the possibility of global 

effects are probably best investigated using carbon cycle modeling, because, for example, any 
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consideration of impacts on the global carbon cycle must also take into account organic carbon 

burial and remineralisation rates in continental shelf environments (e.g., [96, 99, 100]). Rapid 

subsurface bacterial remineralisation would also have caused a marked upward displacement of the 

oxygen minimum zone which would have in turn have affected the locus and rate of organic carbon 

deposition on the continental shelves and margins [24]. Moreover on long timescales (e.g. 103-106 

years) negative feedback mechanisms caused by enhanced silicate weathering could counteract any 

increases in pCO2 caused by a reduction in deep sea carbon burial (e.g., [99, 101, 102]).  

 

The second observation, that is, the larger surface-to-deep δ
13

C gradient, has been reported in 

several cases and seems to be a common feature of the Eocene ocean [53, 92]. More complete 

remineralisation of organic matter should in theory produce a greater surface-to-deep offset as more 

light carbon is being pumped into the ocean interior although this is unlikely to be the sole cause of 

the elevated gradients; more complete remineralisation should serve to reduce the δ13CDIC in the 

deeper ocean rather than elevate surface values. Instead, the surface ocean δ
13

CDIC could have been 

elevated due to higher rates of primary productivity which would have transferred proportionally 

more12C to organic tissues than occurs today. This would imply higher oceanic nutrient availability, 

perhaps from enhanced silicate weathering under greenhouse climates (e.g., [99, 100, 102, 103]) or 

efficient turnover of deep waters [104]. Alternatively, oceanic DIC concentrations could have been 

generally lower in the Eocene, as indicated by some carbon cycle models (e.g., [100]), which would 

enhance observed δ
13

CDIC:depth gradients even without a change in rates of primary productivity in 

the surface ocean. This remains a possibility although several models suggest broadly unchanged 

DIC (and alkalinity) over the Cenozoic [105]. 

 

In summary, our data from the warm Eocene ocean provide prima facie support for the idea that the 

remineralisation of sinking organic carbon in the water column was much more efficient than is 

currently the case. We plan to investigate this possibility further by incorporating metabolic rate 

effects into carbon cycle models. Models should also be used to take into account other controls on 

the shape of the δ13CDIC: depth profile, many of which may relate to elevated water temperatures, 

such as changes in oceanic circulation and enhanced oceanic stratification. This information about 

warm climates from the past may have important implications for the future: if anthropogenic 

emissions move the world oceans towards warm Eocene-like conditions, there may be similar 

profound consequences for water column structure and biological activity, and potentially far-

reaching effects on the marine carbon cycle.  
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Figure captions 

 

Fig. 1. Schematic cartoon of the modern biological pump showing production of organic matter, its 

consumption by higher organisms and the respiration of CO2. The profile on the right shows a 

δ
13CDIC profile from a site offshore modern Tanzania (data taken from site 425 of [90]) to illustrate 

the typical decrease in δ13CDIC with depth due to preferential fixation of isotopically light carbon in 

the surface ocean during photosynthesis and the subsequent return of this light carbon as sinking 

organic matter is respired by microbes. 

 

Fig. 2. Multi-species δ
18

O and δ
13

C crossplot for a modern core-top foraminifera assemblage from 

~200 km offshore Tanzania (Latitude 8°51.5538'S Longitude 41°26.4102'E) at a water depth of 

3006 m [94] Modified from Figure 7 of Birch et al. ([48]; full caption given therein). The site is 

oligotrophic, as shown by the CTD (conductivity temperature depth probe) data and the assemblage 

composition, which is dominated by typical oligotrophic species with only a very minor fraction of 

species that represent seasonal upwelling (e.g., Globigerinita glutinata). Planktonic 

foraminifera δ18O values were converted to temperature according to the relationship of Erez and 

Luz [57] and using a modern seawater δ18Ow value of 0.47 ‰. The grey band represents a 

composite water column δ13CDIC measurements taken from 7 sites within ~ 800 km of their study 

site (from World Ocean Database) and incorporating a +/- 0.5‰ window to account for seasonal 

variations. Data points falling outside of this band are thought to represent calcification out of 

isotopic equilibrium with DIC or by foraminifera that calcified during episodes of seasonal 

upwelling (i.e,. G. bulloides and G. glutinata). For the species with obligate symbionts (*), the 

largest individuals have δ13C values up to 1.0 ‰ higher than the equilibrium envelope due to 

photosynthetic activity by symbiotic algae. The smallest individuals of most species have δ
13

C 

values that are 0.2-2.0 ‰ lower than the envelope because of size-related metabolic effects. The 

δ
13C measured in mid-sized shells (in the ~212-355 µm size fraction) in fossil assemblages should 

therefore provide the closest approximation of δ
13

CDIC. Gs.= Globigerinoides, Ga. = Globigerinita, 

Gt. = Globoturborotalita, O. = Orbulina, Gg. = Globigerina, Gr. =Globorotalia; Ge. 

=Globigerinella, Gd. =Globorotaloides , T. =Truncorotalia. 

 

Fig. 3. Cartoon showing how data points plotting in different fields of the δ18O and δ13C crossplots 

can be interpreted after Pearson and Wade [75]. 

 

Fig. 4. A. Temperature:depth profiles from modern measurements from offshore Tanzania (CTD 

data from, 41° 77 E, 10° 65 S, water depth of 2219 m [94]) and those generated by the HadCM3 

Page 26 of 36

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 27

(dashed) and NCAR (solid) models [80, 81]. Only the NCAR profile produced using a 2240 ppmv 

pCO2 climate forcing is illustrated here; the sea surface temperatures in the modelled profile are 

consistent with the temperatures derived from middle Eocene mixed layer foraminiferal δ
18

O 

values. The profiles generated by 1120 ppmv (used for the late Eocene timeslice) and 4480 ppmv 

(used for the early Eocene timeslices) pCO2 simply shift the profile to higher or lower temperatures. 

B. Temperature:depth profile for the modern (a composite of 7 measured depth profiles from the 

World Ocean Database 2009 [82] between 19.5 and 22.5 N and -95.5 and -96.5 W) and profile 

generated by the NCAR model for the middle Eocene [81]. 

 

Fig. 5. A-H. Step-by-step reconstruction of δ13C:depth gradients using this data and modelled 

temperature:depth profiles. i) Cross plots of δ13C and δ18O data from Pearson et al. [50], Pearson et 

al. [17] and Wade and Pearson [49] showing names of multiple species of planktonic (and benthic) 

foraminifera and the size fraction in which they were analysed (given in µm), where appropriate. 

Note that in Fig. 5H, species names have been updated from the original dataset in Pearson et al., 

[50]. *Ps. pseudowilsoni in this case was originally named Paragloborotalia pseudomayeri  in 

Pearson et al. [50]. Strictly speaking, Pa. pseudomayeri is a synonym of Turborotalia pomeroli 

[106] but at the time of data collection, the authors [50] actually designated this species name to 

what would now be referred to as Ps. pseudowilsoni. A. = Acarinina; C = Catapsydrax; Cb = 

Cribrohantkenina; Cg = Chiloguembelina; Ga. = Globoturborotalita; Gk. = Globigerinatheka; 

Gm. = Guembelitrioides; I. = Igorina; M. = Morozovellain A-C, Morozovelloides in D-F; Pg. = 

Planoglobanomalina; Ph. = Pseudohastigerina; Ps. =Parasubbotina; S. = Subbotina; Ta. = 

Turborotalita. ii) The same cross plots redrawn to show mixed layer temperature (generated from 

the lowest δ
18

O value), denoted by a dashed line. Empty squares represent those data points that 

were not used to construct the final δ13C profile following the criteria of Birch et al. (2012). Note 

that no data points were eliminated from the Guayabal Formation assemblage (H) because during 

the initial data collection, foraminifera were chosen from all size fractions >250 µm. iii) 

Temperature:depth profile showing how the δ18O-generated temperatures were used to generate 

absolute depths. iv) δ13C:depth profiles for each sample (black) and the modern profile (green) for 

offshore Tanzania (averaged profile from several nearby sites). Note that studies suggest that 

surface Indian Ocean δ13CDIC values have decreased by ~ 0.6 ‰ since 1900 [107] due to the ‘Suess 

effect’ i.e. the influence of isotopically light carbon emitted through burning fossil fuels. This has 

not been included in the figure but should be noted.  
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