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Abstract. We demonstrate the application of an efficient
multivariate probabilistic parameter estimation method to a
spectral primitive equation atmospheric GCM. The method,
which is based on the Ensemble Kalman Filter, is effective at
tuning the surface air temperature climatology of the model
to both identical twin data and reanalysis data. When 5 pa-
rameters were simultaneously tuned to fit the model to re-
analysis data, the model errors were reduced by around 35%
compared to those given by the default parameter values.
However, the precipitation field proved to be insensitive to
these parameters and remains rather poor. The model is com-
putationally cheap but chaotic and otherwise realistic, and
the success of these experiments suggests that this method
should be capable of tuning more sophisticated models, in
particular for the purposes of climate hindcasting and pre-
diction. Furthermore, the method is shown to be useful in
determining structural deficiencies in the model which can
not be improved by tuning, and so can be a useful tool to
guide model development. The work presented here is for
a limited set of parameters and data, but the scalability of
the method is such that it could easily be extended to a more
comprehensive parameter set given sufficient observational
data to constrain them.

1 Introduction

Parameter estimation is an important part of the creation of a
complex numerical model, and is especially critical for pre-
diction of anthropogenically-forced climate change, since it
is parameters (rather than initial conditions) which determine
the model climate. Until recently, no practical and efficient
method for automatic tuning was available, so researchers
generally use a large number of trial-and-error direct pertur-
bation sensitivity experiments in order to choose appropriate
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values for model parameters (e.g.Allen, 1999; Knutti et al.,
2002). However, these brute-force methods are spectacularly
inefficient for even modest problems, with the cost growing
exponentially with the number of parameters. Variational pa-
rameter estimation with an adjoint model does not work well
for tuning the climate of chaotic models due to their sensi-
tive dependence on initial conditions: some attempts have
been made to ameliorate this problem but no wholly satisfac-
tory method has yet been found (Köhl and Willebrand, 2002,
2003; Lea et al., 2000, 2002). Moreover, when used for cli-
mate prediction purposes, parameter estimation is not merely
a search for the optimal values (which an adjoint most read-
ily generates) but a range of parameters that represents the
uncertainty in their (joint) distribution, since this is what de-
termines the uncertainty of the climate reponse for a given
scenario.

The ensemble Kalman filter or EnKF (Evensen, 1994) is
an efficient Monte Carlo approximation to the Kalman filter
equations (Kalman, 1960). It has been widely used in near-
operational forecasting, especially for short-term numerical
weather and ocean prediction. A thorough description of the
theory and basic methodology together with a survey of re-
cent applications is provided inEvensen(2003). Although
the EnKF has generally been used for sequential initial state
estimation, parameter estimation can readily be included in
the same framework, by the means of state space augmenta-
tion (Derber, 1989; Anderson, 2001). The principle here is
that the parameters can be considered to be part of the model
state alongside the conventional variables, and then the co-
variances sampled by the ensemble members can be used di-
rectly to update parameters in exactly the same manner as for
the state variables.

Although this approach to parameter estimation has been
well known for some time, previous applications appear to
have generated generally rather poor results. For example,
Kivman(2003) found that the EnKF performed rather poorly
when applied to simultaneous state and parameter estimation
in the Lorenz model. He ascribed this problem to the highly
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non-Gaussian probability distribution functions which arise.
He found that a particle filter worked rather better, but this
is generally much more computationally expensive for high-
dimensional systems, and even that method will converge
over time to a single set of (incorrect) parameter values un-
less some form of noise is added to the system.

When noise is added, and the parameter values are there-
fore allowed to vary through time, simultaneous parame-
ter and state estimation can give good results via both the
EnKF (Anderson, 2001) and particle filter (Losa et al., 2003).
However, the need to add random noise, the amount of which
is generally rather poorly determined, would greatly compli-
cate any long-term forecasting and the model could be ex-
pected to lose skill over climatological time scales. On the
other hand, estimating temporally constant parameter values
by fitting a long integration of a chaotic model to a time
series of data is extremely challenging even for a perfect
model (Pisarenko and Sornette, 2004) and impossible in all
real applications with imperfect models.

Therefore, tuning of parameters for climatological fore-
casting is generally treated from the standpoint of choos-
ing temporally fixed values for which the model’s climatol-
ogy matches observations (Allen, 1999; Giorgi and Mearns,
2002; Murphy et al., 2004). Although the model’s trajec-
tory through state space is highly sensitive to initial condi-
tions, the climate of a sufficiently long trajectory (for exam-
ple, temporal means of particular model variables) is typi-
cally much less sensitive to initial conditions, being essen-
tially a sample of the underlying true model climate (i.e. the
limit as integration time tends to infinity) contaminated by a
small (and controllable) amount of deterministic noise due to
the finite integration interval. For all practical purposes, this
noise can be treated as truly stochastic, and it decreases in
proportion to the square root of integration time (Lea et al.,
2000).

Recently, Annan et al.(2005) have presented an effi-
cient technique for parameter estimation using the ensemble
Kalman filter. This has been applied to the simultaneous esti-
mation of 12 parameters in the low-resolution (non-chaotic)
coupled atmosphere-ocean model ofEdwards and Marsh
(2005), and also to the chaotic 3-variable Lorenz model (An-
nan and Hargreaves, 2004).

These previous applications of this climatological param-
eter estimation method have been limited to cases where the
model is either devoid of internal chaotic dynamic or chaotic
but very low-dimensional. Here, we extend these results
to show that the method can also work successfully when
applied to a realistic intermediate complexity atmospheric
GCM. Our results suggest that this method could be used for
practical applications with a range of sophisticated climate
models.

In Sect.2, we describe the model and outline the estima-
tion method. Section3 describes an identical twin experi-
ment, where the model is tuned towards a climate generated
by a known set of parameters. Section4 contains the results
of the numerical experiments using reanalysis (i.e. based on
observed) data. We conclude the paper in Sect.5.

2 Model and methods

2.1 A simplified atmospheric GCM

The model we use is essentially that ofde Forster et al.
(2000), which has been used in a diverse range of stud-
ies (e.g.Rosier and Shine, 2000; Highwood and Stevenson,
2003; Joshi et al., 2003). Some modifications have been
made to the original model, which will be described below.
The model is an intermediate resolution (T21) spectral prim-
itive equation atmospheric general circulation model which
was originally designed to efficiently examine the mecha-
nisms of climate change and the robustness of model be-
haviour under varying scenarios. To that end, it contains
somewhat simplified parameterisations including a particu-
larly efficient radiation scheme, in order to enable multiple,
decadal-length integrations. However, due to the close rela-
tionship with higher complexity models, it is not unreason-
able to expect that its behaviour is largely consistent with
them.

Our main interest in this model is as a component of a new
Earth System model of intermediate complexity which is be-
ing built as part of the GENIE project (http://www.genie.ac.
uk). The ultimate goal of this project is to create a model
capable of lengthy and/or ensemble simulations such as are
necessary for paleoclimate (for example a glacial-interglacial
cycle) and long-term climate change studies (for example
the effect of a reduction in the sizes of the Greenland and
Antarctic ice-sheets). An efficient 3D ocean model has al-
ready been built and coupled to a simple 2D energy and mois-
ture balance atmosphere (Edwards and Marsh, 2005; Harg-
reaves et al., 2004), but we believe that the dynamic AGCM
used in this paper models the atmospheric processes more
realistically and therefore should be able to generate signif-
icantly improved results when coupled to the ocean model.
The original version of this atmospheric model as presented
by de Forster et al.(2000) had 22 vertical layers and was cou-
pled to a slab ocean. In order to speed it up and prepare for
coupling to the ocean model, the number of vertical layers
in the atmospheric model has been reduced to 7, and some
restructuring of the code has been carried out. The reduction
in the number of vertical levels has suprisingly little effect on
the convective precipitation and surface temperature, but re-
duces the intensity of the mid-latitude storms somewhat. The
slab ocean and sea-ice layers have been temporarily replaced
by user-specified sea surface and sea ice temperature fields.
These will ultimately be provided by the ocean and sea-ice
model components, but in the work presented here we have
used climatological monthly mean values (NCEP Reanaly-
sis data provided by the NOAA-CIRES Climate Diagnos-
tics Center, Boulder, Colorado, USA, from their Web site at
http://www.cdc.noaa.gov/), linearly interpolated onto a 2-day
timestep. Therefore, the model in the form described here
is not suitable for generating predictions of climate change,
due to the absence of feedbacks associated with interactive
sea-ice (for example changes in albedo) and ocean (for ex-
ample changes in surface temperature and the thermohaline

http://www.genie.ac.uk
http://www.genie.ac.uk
http://www.cdc.noaa.gov/


J. D. Annan et al.: Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter 365

circulation). However, its speed and dynamical similarity to
more complex GCMs makes it a highly suitable test-bed for
investigations of parameter estimation methods which may
be more widely applicable.

2.2 EnKF implementation

Previous applications of the EnKF for parameter estimation
with the coupled 2D atmosphere – 3D ocean model are de-
scribed inAnnan et al.(2005) andHargreaves et al.(2004).
As mentioned in the Introduction, the model state of each
ensemble member is augmented with parameter values and
climatological diagnostics from a model run of specified du-
ration, and time series output is not used directly.

For a steady state problem (i.e. tuning the model’s cli-
matology), the Kalman Filter can in fact be simplified to a
Wiener Filter (Press et al., 1994, Sect. 13.3) and the equa-
tions can be solved in a single step. However, if this approach
is attempted, the “curse of dimensionality” (Bellman, 1961)
implies that the ensemble size would have to be very large in
order for any of the prior sample to be close to the posterior.
Moreover, if the problem is nonlinear, then this combined
with the finite ensemble (and numerical approximations that
are usually required for implementation) will tend to result
in an inaccurate posterior estimate which does not satisfy the
model equations (i.e. is unbalanced), as we show in a simple
example below. We have therefore implemented an iterative
approach which we now describe in more detail.

As shown inEvensen and Leeuwen(2000), data can in
principle be assimilated in arbitrary order, together or sep-
arately without affecting the final estimate, so long as there
are assumed to be no correlations between observational er-
rors on data which are assimilated in different batches. We
can use this result to generate sets of artificial observations,
which when all are assimilated is equivalent to the original
data set, but which when assimilated sequentially in batches,
reduces the inaccuracies due to nonlinearity and the curse
of dimensionality by virtue of replacing a single huge jump
between the prior and posterior with a sequence of smaller
steps.

For example, if the original data set takes the values
xo with observational error covariance matrixR, then we
can create 2 sets of artificial observations which both have
the valuesxo and covariance matrices 2R, with the sets
of observations assumed independent of each other (the
fact that they actually take the same values does not mat-
ter). These two sets of observations are exactly equiva-
lent to the original set in terms of the posterior they gen-
erate, since they could be combined, prior to assimila-
tion, into the valuesxo+1/2(xo−xo)=xo with covariance
matrix 2R(2R+2R)−12R=R (using the standard equations
for optimal interpolation). Indeed, this is exactly how
one would normally combine separate observations of the
same model variable (say, duplicate independent observa-
tions taken within a specific grid box and time interval).
However, these data sets can also be assimilated sequentially
into the model in two steps to generate the same posterior.

For a nonlinear model with relatively diffuse prior, the sin-
gle step procedure is liable to be somewhat inaccurate and
generate unbalanced solutions. However, when the data are
assimilated in two stages, the loss of balance and resulting
inaccuracy can be reduced by reintegrating the model equa-
tions between performing the two analyses. We can gener-
alise this approach toN sets of identical observations (for
any whole numberN) with the covariance matricesNR, or
even an infinite number of sets of observations, as we now
show.

For convenience, we write(xo, Q) to denote the set of ob-
servations which take the valuesxo (a vector) with covari-
ance matrixQ. We consider the infinite series of sets of ob-
servations

{(xo, ce
iR)} i ∈ N,

wherec ande are real constants.
By induction, the firstN terms in this series can be com-

bined into a single equivalent set of observations taking the
same valuesxo but with the covariance matrix

ceN−1(e − 1)

eN − 1
R,

which converges to

c(e − 1)

e
R

in the limit asN→∞. Therefore, if we choosec=e/(e−1),
the infinite series of observations is equivalent to the original
set. In these equations,e andc are the squares of the “ex-
pansion” and “correction” factors described inAnnan et al.
(2005). e>1 can be chosen arbitrarily, with smaller values
giving a slower convergence but more accurate final solution
to the problem in the presence of model nonlinearity. We
have found that values in the range 1.05≤e≤1.2 generally
give good results.

We can converge towards the posterior solution defined
by this infinite sequence of sets of observations by starting
from an arbitrary initial guess(i, S) and then repeating the
sequence:

– Integrate the model to sample the climatology.

– Inflate the ensemble by a factor
√

e about its mean (and
thus increase the covariance matrix by the factore).

– Assimilate the data set defined by(xo, cR).

After N iterations, the posterior is that given by interpola-
tion of the data sets{
(xo, cR), (xo, ceR), (xo, ce

2R), . . . ,

(xo, ce
N−1R), (i, eNS)

}
(at least for a linear model) and so the ensemble converges
as above to the distribution defined by the data set and model
equations.
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Fig. 1. Convergence of scheme for simple nonlinear problem. Thick solid lines indicate

ensemble means, and thinner dashed lines show the one standard deviation widths. Red and

blue lines show the results of two different experiments, with the black lines indicating the

true solution. Red: initial distributionx = 1 ± 5, expansion factore = 1.1. Blue: initial

guessx = 20 ± 10, expansion factore = 1.44.
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Fig. 1. Convergence of scheme for simple nonlinear problem. Thick
solid lines indicate ensemble means, and thinner dashed lines show
the one standard deviation widths. Red and blue lines show the
results of two different experiments, with the black lines indicating
the true solution. Red: initial distributionx=1±5, expansion factor
e=1.1. Blue: initial guessx=20±10, expansion factore=1.44.

So far we have ignored the prior (the influence of the ini-
tial ensemble decays with the iterative process). However,
we can observe that a prior estimate is precisely equiva-
lent to a set of observations with the same mean and co-
variance matrix. Therefore, the prior can also be assimi-
lated simultaneously by the same iterative scheme and the
data sets(xo, cR) should be viewed as consisting of the ob-
servations of model output (such as climatological values)
together with prior estimates of parameter values. Conver-
gence to the limit is linear (at least for a linear model), and
the cost of each iteration barely changes with the number
of parameters to be estimated (assuming that this number is
substantially smaller than the total dimension of model and
climatological fields) so this method has the potential to be
extremely efficient compared to the alternatives which have
been previously used.

We illustrate the process with the followng simple exam-
ple. Our model takes a single input variable,x, for which we
have a prior estimatex=30±10 (the indicated uncertainties
are all one standard deviation, Gaussian, and assumed inde-
pendent where possible) and generates the outputy via the
slightly nonlinear equation

y = x + 0.02x2. (1)

We have a single observationyo=12±1. The posterior distri-
butions forx andy can be easily calculated numerically, and
are given byxa=10.0±0.7, ya=12±1 to one decimal place
(the posterior distributions are not perfectly Gaussian but ex-
tremely close, and of course the uncertainties onxa andya

are highly correlated). Even for such a near-linear problem, a
single application of the EnKF equations (using an ensemble
of 10 000 members to eliminate one possible source of error)
gives the rather poor solutionxa=13±1.3, ya=12±1. The

estimate forxa is very poor and moreover these values do not
come close to satisfying the model equations (x=13±1.3 is
mapped by the model toy=16.4±2). The source of this error
is that the prior mean and covariance matrix cannot represent
the full nonlinear distribution adequately, and this distorts the
posterior even though the prior is very diffuse and should
have minimal influence. Two experiments using our iterative
method using an ensemble size of 100, with different ensem-
ble expansion factors and initial guesses, are shown in Fig.1.
Both experiments converge to the correct solution and gen-
erate well-balanced(x, y) pairs, in marked contrast to the
single-step procedure.

An additional benefit of this scheme is that since prior in-
formation is treated in an identical manner to observational
data, it can be completely eliminated from the analysis if the
observational constraints are adequate in themselves. This
solves the problem of the double-counting of data through
its inclusion in expert priors (Allen et al., 2002). Although
it may seem rather inefficient to repeatedly integrate the
ensemble members towards climatological convergence, in
practice the integration interval within the iterative procedure
can be kept quite short (significant stochastic noise in indi-
vidual members can be tolerated due to the ensemble size)
and so the total integration time is not so dissimilar from
what would be required for a single integration of the en-
semble to an accurate steady state. We use both 1 and 5 year
iterative cycles in the work presented here, with reasonable
convergence for the 1 year cycle requiring roughly 50 years
in total per ensemble member, a time which is only a modest
factor greater than the O(15–30) year integrations which are
generally used to generate model climatologies.

In the previous applications with the coupled climate
model, a parallel supercomputer was used to integrate the
ensemble members simultaneously, and a domain decompo-
sition was implemented for the analysis step following the
method ofKeppenne(2000). However, the domain decom-
position is not necessary for relatively small models where
the entire ensemble can be stored on a single processor as
is the case here. The 64-member ensemble that we use here
(determined by the maximum number of processors avail-
able for a single job) is integrated in parallel, one member
to a processor as before, but the analysis is performed on a
single processor. In order to limit the cost of the analysis
(which is dominated by the inversion of the error covariance
matrix), the observations are treated sequentially in blocks
of 1024 values (the number of lateral grid points on a hemi-
sphere). So long as the observational errors are uncorrelated,
as is assumed here, this sequential treatment does not affect
the solution. With each year of integration taking about 8 min
per processor (on a Compaq Alpha SC), and the analysis re-
quiring about 4 min (with the remaining 63 processors sitting
idle), this approach is somewhat inefficient for a 1 year anal-
ysis cycle but the wastage is much less significant for a 5 year
cycle. Each complete experiment of 100 years integration per
ensemble member (6400 total model years) took about 20 h
of real time using the 1 year cycle, with a typical load fac-
tor of about 65%. For the 5 year iterative cycle, the average
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Fig. 2. Parameters converging in two identical twin tests for 1 and 5year iteration, with

different starting points. Red, dark blue and magenta linesindicate different experiments

with 1, 1 and 5 year iterations respectively. Thick lines represent ensemble means, thin

dashed lines indicate ensemble width (1 standard deviation). Cyan dotted lines indicate

parameter values used to generate synthetic data set.
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Fig. 2. Parameters converging in two identical twin tests for 1 and 5 year iteration, with different starting points. Red, dark blue and magenta
lines indicate different experiments with 1, 1 and 5 year iterations respectively. Thick lines represent ensemble means, thin dashed lines
indicate ensemble width (1 standard deviation). Cyan dotted lines indicate parameter values used to generate synthetic data set.

loading was improved to around 90% and the same integra-
tion length only required 15 h, however in our experiments
convergence of this system required more model-years in to-
tal resulting in a longer overall integration time. Computing
resources were not a limiting factor and the performance of
our system may be some way from optimal. Further investi-
gation may be worthwhile for application to more computa-
tionally demanding models.

We chose 5 parameters to tune using this system, identi-
fied via some preliminary sensitivity analyses which involved
a series of 10-year integrations in which 29 tunable param-
eters were varied individually, within ranges believed to be
physically reasonable (with the other parameters held fixed
at the default values). The tunable parameters were from
the radiation, convection, and surface parameterisations. The
5 variables finally selected were those which were found to
have most effect on a skill score which was determined by
the quality of fit to the tuning targets of December–January–
February (DJF) and June–July–August (JJA) surface air tem-
perature and precipitation (4 two-dimensional data sets in to-
tal). The parameters selected were (A) a non-dimensional
linear multiplier of the sensible and latent heats, (B) the
convective precipitation rate in mm/day at which convective
clouds start to form, (C) the large-scale cloud supersatura-
tion for the liquid water path calculation, (D) the convective
cloud supersaturation for the liquid water path calculation,

and (E) the relative humidity at which large-scale clouds are
assumed to completely cover a grid-box. Three of the pa-
rameters (B, C, and D) are constrained to be positive, but can
otherwise vary by several orders of magnitude without inval-
idating the model. For these, we use a logarithmic transfor-
mation as inAnnan et al.(2005), in order to avoid negative
analysis values. The remaining two parameters (A and E)
have a priori much more restricted ranges and therefore no
transformation was necessary.

3 Identical twin testing

3.1 Experimental details

For the identical twin testing, a model run of 30 years was
performed with a set of randomly-chosen parameters, and
the output of the final 25 years analysed into synthetic “ob-
servations” of total precipitation and surface air temperature
for the DJF and JJA seasons at all points on the model grid,
thus making a total of 2048×4=8196 data points. Deter-
mining an appropriate estimate for observational errors of
these data points is not entirely trivial, since although the
typical distance of these fields from the model’s true climate
(given an infinite integration) can be readily estimated, it
would be inappropriate to use this value for the assimilation.
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Fig. 3. Parameters converging in two experiments with reanalysis data (red and dark blue

lines as for Fig. 2).
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Fig. 3. Parameters converging in two experiments with reanalysis data (red and dark blue lines as for Fig.2).

This is because the short model integrations used in the iter-
ative scheme will have a correspondingly larger component
of chaotic noise, and so it is not possible for them even in
principle to match the observed values to within this obser-
vational accuracy. Attempting to fit the data more closely
than is possible, forces the ensemble to collapse to a point
in parameter space. Moreover, the spatial correlation of the
model bias implies that the observational errors are not truly
independent. Therefore, the error statistics were scaled up by
a somewhat arbitrary factor of 20, the influence of which was
checked by comparing the posterior model skill to the ex-
pected value for a short integration with correct parameters.
Clearly this ad-hoc adjustment is not an entirely satisfactory
approach and further investigations are planned. The errors
were also assumed spatially invariant.

The ensemble was initialised with each member having
parameters chosen from a distribution some way removed
from the truth run. Since the spin-up time of the model is so
fast, there is no systematic dependence of the climatology on
the initial fields even for a 1 year integration. Furthermore,
the model appears to have a problem when initialised with an
excessively cold state in the polar regions (which can arise
in some analysed model states), so rather than attempting to
corect this problem here we instead decided to re-initialise
from a uniform state (“cold start”) rather than use the anal-
ysed model fields throughout the iterative analysis procedure.
Obviously, for a model with a longer spin-up time, compu-

tational efficiency would be improved by using the analysed
state which should be in reasonable balance with the anal-
ysed parameter set.

There are two primary adjustable controls on our assimila-
tion scheme, being the length of integration between analysis
steps, and the ensemble inflation factor. A longer integration
interval gives more stable estimates of each ensemble mem-
ber’s climatology, with the noise due to deterministic chaos
decreasing in inverse proportion to the square root of the run
length, as if it was truly random noise (Lea et al., 2000). A
larger ensemble inflation factor also gives more rapid conver-
gence but is potentially less accurate in nonlinear situations.
In practice, run lengths of 1 and 5 years, with an inflation
factor of 10%, gave good results which are now described
further.

3.2 Identical twin results

We wanted to investigate the value of the limited observa-
tional data used, so no prior estimates of parameter values
were used in the initial experiments. Figure2 shows the con-
vergence of the parameter distributions and cost function for
three identical twin experiments. Two of these experiments
used a 1 year cycle and 100 iterations (6400 model years
in total), and were identical apart from the initial ensemble.
Results for a single experiment using 80 iterations of a 5
year cycle (25 600 years) are also shown. Parameters A, C,
and E have converged in all experiments to the same stable
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Fig. 4. Model SAT errors (degrees Kelvin), before and after tuning.
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Fig. 4. Model SAT errors (degrees Kelvin), before and after tuning.

distributions, consistent with the truth. Parameter D is not
so clear, with perhaps some evidence of a continued mod-
est drift to lower values, but again it is consistent with the
value used to generate the identical twin data. Parameter B,
however, is clearly not constrained in the 1 year experiments
although there are some signs that it is converging with the
5 year iterations. Given that these parameters were initially
selected to be those for which the model was most sensi-
tive, this suggests that the data used are barely adequate for
constraining as many as 5 parameters simultaneously. Even
though there are 8196 data points in all, they only represent
2 types of measurement so this is a not entirely unexpected
result. It is, however, also possible that the preselection of
sensitive parameters (based around the default values) may
not be valid close to this new optimum.

The cost function of an ensemble member is given by the
sum of the squared differences between model and synthetic
data fields, normalised by the number of model grid points.
The cost function line plotted in Fig.2 is the mean of the
costs of the ensemble members (rather than the cost of their
mean output). A typical cost of a little over 7 in the pos-
terior ensemble for the 1 year iterations is made up of 5.5
for the two temperature fields (

√
5.5/2=1.4 K RMS error at

each gridpoint) and 1.6 for the precipitation (0.9 mm/d RMS
precipitation error). This is essentially the same as the vari-
ability between model runs due to stochastic noise. For the 5
year integration, the cost is about 2, illustrating not a superior
solution (the parameter distributions are essentially the same)

but the effect of the longer integration on reducing the magni-
tude of the deterministic noise. At the true parameter values
and arbitrary initial conditions, stochastic noise generates a
cost of 1.7, so the range of parameter values in the posterior
distribution is generating a marginally worse fit to the data
than that due to stochastic noise alone. All ensembles have
generated similar parameter distributions despite the differ-
ent experimental conditions. This suggests that multiple lo-
cal minima are not a significant problem in this application,
if they exist at all.

4 Application using reanalysis data

We now apply the method using observational data. The sur-
face air temperature and the precipitation both come from
climatological monthly-mean NCEP reanalysis.

In initial experiments, it quickly became apparent that it is
not possible for this model to match the data closely, with any
combination of values for the 5 parameters. There are signif-
icant regional biases in both temperature and precipitation
which cannot all be simultaneously eliminated by parameter
tuning alone. As a result of the model-data mismatch, two of
the parameters (C and E) were forced towards values which
were numerically unstable (and physically meaningless, in
the case of parameter E) and prior distributions for them had
to be provided. With this proviso, convergence was actu-
ally more rapid and consistent in these experiments than in
the identical twin tests, perhaps because with two parameters
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Fig. 5. Model precipitation error (mm/d), before and after tuning.
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Fig. 5. Model precipitation error (mm/d), before and after tuning.

forced to the edges of their ranges, there were fewer remain-
ing effective degrees of freedom and less nonlinearity in the
parameter space. Again, repeat runs under different condi-
tions did not find any different solutions. Figure3 shows the
evolution of the parameter distributions and cost functions
for two experiments.

The ensemble mean temperature matches the data fairly
well (Fig. 4), with a typical RMS error of 3K at each grid-
point. However, it should be noted that in tuning to reanalysis
data, we have chosen a somewhat easier target than if we had
used pure observations. Substantial cold biases over the high
plateaux (especially Tibet) are present in almost all AGCMs,
including that used for the NCEP reanalysis. This compari-
son therefore gives an optimistic impression of model skill by
masking the same failing in our model. In contrast to the rea-
sonable temperature fields, precipitation remains poor in all
simulations (Fig.5), with an RMS error as high as 3mm per
day. In fact, even attempting to tune to precipitation alone,
completely ignoring the fit to the temperature data, did not
improve that result. The model parameters appear to have
very little effect on precipitation patterns, despite several of
them relating directly to hydrology. Re-examining the re-
sults from the univariate sensitivity analysis indicated that
the wider range of 29 parameters tested all had a minimal
effect on the precipitation. Disabling the convection scheme
entirely, changed the model precipitation more substantially
(and in fact led to an overall improvement). Clearly this
points to a significant structural deficiency and research is

now under way to investigate alternative convection schemes.
Although the model output is disappointing in this respect,
the power of this multivariate tuning method is still appar-
ent here in efficiently and rigorously identifying the limit of
the parameter tuning and thereby motivating investigation of
structural changes which are now under way.

The overall fit to the data, using our unweighted cost func-
tion, dropped from a value of 78 for the default parameters, to
33 for the tuned ensemble, representing an improvement of
about 1−

√
33/78=35% in the typical model-data mismatch.

5 Conclusions

The iterative ensemble Kalman filter for parameter estima-
tion has been successfully applied to an intermediate com-
plexity spectral primitive equation AGCM. The underlying
similarity of this model to more complex AGCMs, for ex-
ample the CCSR/NIES model (Nozawa et al., 2001), implies
that they could also be tuned using this method, and further
work in this direction is in progress. Identical twin testing
demonstrates that the method reliably finds a unique opti-
mal posterior pdf in parameter space, although of course this
cannot be guaranteed in all applications. Tuning to reanalysis
data generates realistic temperature fields. However, precip-
itation in this model remains rather poor and this problem
appears to be due to structural deficiencies in the convection
routine. Further research is now under way to improve this
situation. The efficient optimal parameter tuning has already
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proved its worth by showing that parameter tuning will not
improve this aspect of model behaviour, and we expect it to
contribute futher in the creation of the coupled atmosphere-
ocean model. With more data sources, there are no obvious
reasons why many more parameters could not be simultane-
ously tuned as the computational time appears to only scale
slowly with the number of free parameters.

Although the model as presented here is not directly suited
to climate prediction (being created as one component of an
Earth system model), the success of the method in this appli-
cation strongly suggests that there are no fundamental rea-
sons why future applications to prediction using more com-
plete models should not be successful.
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